下图来源:https://github.com/hoya012/deep_learning_object_detection
以下内容来源:https://github.com/shanglianlm0525/PyTorch-Networks
典型网络
典型的卷积神经网络包括:AlexNet、VGG、ResNet; InceptionV1、InceptionV2、InceptionV3、InceptionV4、Inception-ResNet。
AlexNet: ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, 2012
VGG: Very Deep Convolutional Networks for Large-Scale Image Recognition,Karen Simonyan,2014
ResNet: Deep Residual Learning for Image Recognition, He-Kaiming, 2015
InceptionV1: Going deeper with convolutions , Christian Szegedy , 2014
InceptionV2 and InceptionV3: Rethinking the Inception Architecture for Computer Vision , Christian Szegedy ,2015
InceptionV4 and Inception-ResNet: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , Christian Szegedy ,2016
DenseNet: Densely Connected Convolutional Networks, 2017
ResNeXt: Aggregated Residual Transformations for Deep Neural Networks,2017
轻量级网络
轻量级网络包括:GhostNet、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet。
MobileNets: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV3:Searching for MobileNetV3
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and < 0.5MB Model Size
Xception: Deep Learning with Depthwise Separable Convolutions
MixNet: Mixed Depthwise Convolutional Kernels
目标检测网络
目标检测网络包括:SSD、YOLO、YOLOv2、YOLOv3、FCOS、FPN、RetinaNet Objects as Points、FSAF、CenterNet FoveaBox。
-
SSD: Single Shot MultiBox Detector,2016
论文地址:https://arxiv.org/pdf/1512.02325.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100530275
-
YOLO:You Only Look Once: Unified, Real-Time Object Detection, 2016
论文地址:https://arxiv.org/pdf/1506.02640.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100904605
-
YOLOv2: Better, Faster, Stronger,2017
论文地址:https://arxiv.org/pdf/1804.02767.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100904645
-
YOLOv3: An Incremental Improvement, 2018
论文地址:https://arxiv.org/pdf/1612.08242.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100904663
-
FCOS: Fully Convolutional One-Stage Object Detection, 2019
论文地址:https://arxiv.org/pdf/1904.01355.pdf
论文解读:https://liumin.blog.csdn.net/article/details/89007219
-
FPN:Feature Pyramid Networks for Object Detection, 2017
论文地址:https://arxiv.org/pdf/1612.03144v2.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100864158
-
RetinaNet:Focal Loss For Dense Objective Detection
论文地址:https://arxiv.org/pdf/1708.02002.pdf
论文解读:https://liumin.blog.csdn.net/article/details/102135318
-
Objects as Points: Objects as Points,2019
论文地址:https://arxiv.org/pdf/1904.07850v1.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100867545
-
FSAF: Feature Selective Anchor-Free Module for Single-Shot Object Detection, 2019
论文地址:https://arxiv.org/pdf/1903.00621.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100942317
-
CenterNet: Keypoint Triplets for Object Detection, 2019
论文地址: https://arxiv.org/pdf/1904.08189.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100942259
-
FoveaBox: Beyond Anchor-based Object Detector, 2019
论文地址:https://arxiv.org/pdf/1904.03797v1.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100941880
语义分割网络
语义分割网络包括:FCN、Fast-SCNN、LEDNet、LRNNet、FisheyeMODNet。
-
FCN: Fully Convolutional Networks for Semantic Segmentation
- 论文地址https://arxiv.org/pdf/1411.4038.pdf
-
Fast-SCNN: Fast Semantic Segmentation Network
- 论文地址:https://arxiv.org/pdf/1902.04502.pdf
-
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation
- ;论文地址:https://arxiv.org/pdf/1905.02423.pdf
-
LRNNet: A Light-Weighted Network with Efficient Reduced Non-Local Operation for Real-Time Semantic Segmentation
- 论文地址:https://arxiv.org/pdf/2006.02706.pdf
-
FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving (2019)
- 论文地址:https://arxiv.org/pdf/1908.11789v1.pdf
实例分割网络
实例分割网络包括:PolarMask。
PolarMask: Single Shot Instance Segmentation with Polar Representation ,2019
论文地址:https://arxiv.org/pdf/1909.13226.pdf
论文解读:https://liumin.blog.csdn.net/article/details/101975085
人脸检测和识别网络
人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。
-
FaceBoxes: A CPU Real-time Face Detector with High Accuracy,2018
论文地址:https://arxiv.org/pdf/1708.05234.pdf
论文解读:https://liumin.blog.csdn.net/article/details/97698853
-
LFFD: A Light and Fast Face Detector for Edge Devices,2019
论文地址:https://arxiv.org/pdf/1904.10633.pdf
论文解读:https://liumin.blog.csdn.net/article/details/100181190
人体姿态识别网络
人体姿态识别网络包括:Stacked Hourglass、Networks Simple Baselines、LPN。
StackedHG: Stacked Hourglass Networks for Human Pose Estimation ,2016
论文地址:https://arxiv.org/pdf/1603.06937.pdf
论文解读:https://liumin.blog.csdn.net/article/details/101484455
Simple Baselines:Simple Baselines for Human Pose Estimation and Tracking
论文地址:https://arxiv.org/pdf/1804.06208.pdf
论文解读:https://liumin.blog.csdn.net/article/details/103447040
LPN: Simple and Lightweight Human Pose Estimation
论文地址:https://arxiv.org/pdf/1911.10346v1.pdf
论文解读:https://liumin.blog.csdn.net/article/details/103448034
注意力机制网络
注意力机制网络包括:SE Net、scSE、NL Net、GCNet、CBAM。
-
SE Net:Squeeze-and-Excitation Networks,2017
论文地址:https://arxiv.org/pdf/1709.01507.pdf
论文解读:https://liumin.blog.csdn.net/article/details/104370739
-
scSE:Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, 2018
论文地址:https://arxiv.org/pdf/1803.02579v2.pdf
论文解读:https://liumin.blog.csdn.net/article/details/104371065
-
NL Net:Non-Local neural networks,2018
论文地址:https://arxiv.org/pdf/1711.07971.pdf
论文解读:https://liumin.blog.csdn.net/article/details/104371212
-
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond, 2019
论文地址:https://arxiv.org/pdf/1904.11492.pdf
论文解读:https://liumin.blog.csdn.net/article/details/104375585
-
CBAM: Convolutional Block Attention Module, 2018
论文地址:https://arxiv.org/pdf/1807.06521.pdf
论文解读:https://liumin.blog.csdn.net/article/details/104371273
人像分割网络
人像分割网络包括:SINet。
-
SINet:Extreme Lightweight Portrait Segmentation Networks
论文地址:https://arxiv.org/pdf/1911.09099.pdf
论文解读:https://blog.csdn.net/shanglianlm/article/details/103931852