九大卷积神经网络 ( CNN ) 的 PyTorch 实现

下图来源:https://github.com/hoya012/deep_learning_object_detection

52个目标检测模型

以下内容来源:https://github.com/shanglianlm0525/PyTorch-Networks

典型网络

典型的卷积神经网络包括:AlexNet、VGG、ResNet; InceptionV1、InceptionV2、InceptionV3、InceptionV4、Inception-ResNet

  • AlexNet: ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, 2012

  • VGG: Very Deep Convolutional Networks for Large-Scale Image Recognition,Karen Simonyan,2014

  • ResNet: Deep Residual Learning for Image Recognition, He-Kaiming, 2015

  • InceptionV1: Going deeper with convolutions , Christian Szegedy , 2014

  • InceptionV2 and InceptionV3: Rethinking the Inception Architecture for Computer Vision , Christian Szegedy ,2015

  • InceptionV4 and Inception-ResNet: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , Christian Szegedy ,2016

  • DenseNet: Densely Connected Convolutional Networks, 2017

  • ResNeXt: Aggregated Residual Transformations for Deep Neural Networks,2017


轻量级网络

轻量级网络包括:GhostNet、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet

  • MobileNets: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

  • MobileNetV2: Inverted Residuals and Linear Bottlenecks

  • MobileNetV3:Searching for MobileNetV3

  • ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

  • ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

  • SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and < 0.5MB Model Size

  • Xception: Deep Learning with Depthwise Separable Convolutions

  • MixNet: Mixed Depthwise Convolutional Kernels


目标检测网络

目标检测网络包括:SSD、YOLO、YOLOv2、YOLOv3、FCOS、FPN、RetinaNet Objects as Points、FSAF、CenterNet FoveaBox

  • SSD: Single Shot MultiBox Detector,2016

    • 论文地址:https://arxiv.org/pdf/1512.02325.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100530275

  • YOLO:You Only Look Once: Unified, Real-Time Object Detection, 2016

    • 论文地址:https://arxiv.org/pdf/1506.02640.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100904605

  • YOLOv2: Better, Faster, Stronger,2017

    • 论文地址:https://arxiv.org/pdf/1804.02767.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100904645

  • YOLOv3: An Incremental Improvement, 2018

    • 论文地址:https://arxiv.org/pdf/1612.08242.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100904663

  • FCOS: Fully Convolutional One-Stage Object Detection, 2019

    • 论文地址:https://arxiv.org/pdf/1904.01355.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/89007219

  • FPN:Feature Pyramid Networks for Object Detection, 2017

    • 论文地址:https://arxiv.org/pdf/1612.03144v2.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100864158

  • RetinaNet:Focal Loss For Dense Objective Detection

    • 论文地址:https://arxiv.org/pdf/1708.02002.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/102135318

  • Objects as Points: Objects as Points,2019

    • 论文地址:https://arxiv.org/pdf/1904.07850v1.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100867545

  • FSAF: Feature Selective Anchor-Free Module for Single-Shot Object Detection, 2019

    • 论文地址:https://arxiv.org/pdf/1903.00621.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100942317

  • CenterNet: Keypoint Triplets for Object Detection, 2019

    • 论文地址: https://arxiv.org/pdf/1904.08189.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100942259

  • FoveaBox: Beyond Anchor-based Object Detector, 2019

    • 论文地址:https://arxiv.org/pdf/1904.03797v1.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100941880


语义分割网络

语义分割网络包括:FCN、Fast-SCNN、LEDNet、LRNNet、FisheyeMODNet

  • FCN: Fully Convolutional Networks for Semantic Segmentation

    • 论文地址https://arxiv.org/pdf/1411.4038.pdf
  • Fast-SCNN: Fast Semantic Segmentation Network

    • 论文地址:https://arxiv.org/pdf/1902.04502.pdf
  • LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

    • ;论文地址:https://arxiv.org/pdf/1905.02423.pdf
  • LRNNet: A Light-Weighted Network with Efficient Reduced Non-Local Operation for Real-Time Semantic Segmentation

    • 论文地址:https://arxiv.org/pdf/2006.02706.pdf
  • FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving (2019)

    • 论文地址:https://arxiv.org/pdf/1908.11789v1.pdf

实例分割网络

实例分割网络包括:PolarMask。
PolarMask: Single Shot Instance Segmentation with Polar Representation ,2019

  • 论文地址:https://arxiv.org/pdf/1909.13226.pdf

  • 论文解读:https://liumin.blog.csdn.net/article/details/101975085


人脸检测和识别网络

人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。

  • FaceBoxes: A CPU Real-time Face Detector with High Accuracy,2018

    • 论文地址:https://arxiv.org/pdf/1708.05234.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/97698853

  • LFFD: A Light and Fast Face Detector for Edge Devices,2019

    • 论文地址:https://arxiv.org/pdf/1904.10633.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/100181190


人体姿态识别网络

人体姿态识别网络包括:Stacked Hourglass、Networks Simple Baselines、LPN。
StackedHG: Stacked Hourglass Networks for Human Pose Estimation ,2016

  • 论文地址:https://arxiv.org/pdf/1603.06937.pdf

  • 论文解读:https://liumin.blog.csdn.net/article/details/101484455

Simple Baselines:Simple Baselines for Human Pose Estimation and Tracking

  • 论文地址:https://arxiv.org/pdf/1804.06208.pdf

  • 论文解读:https://liumin.blog.csdn.net/article/details/103447040

LPN: Simple and Lightweight Human Pose Estimation

  • 论文地址:https://arxiv.org/pdf/1911.10346v1.pdf

  • 论文解读:https://liumin.blog.csdn.net/article/details/103448034


注意力机制网络

注意力机制网络包括:SE Net、scSE、NL Net、GCNet、CBAM。

  • SE Net:Squeeze-and-Excitation Networks,2017

    • 论文地址:https://arxiv.org/pdf/1709.01507.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/104370739

  • scSE:Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, 2018

    • 论文地址:https://arxiv.org/pdf/1803.02579v2.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/104371065

  • NL Net:Non-Local neural networks,2018

    • 论文地址:https://arxiv.org/pdf/1711.07971.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/104371212

  • GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond, 2019

    • 论文地址:https://arxiv.org/pdf/1904.11492.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/104375585

  • CBAM: Convolutional Block Attention Module, 2018

    • 论文地址:https://arxiv.org/pdf/1807.06521.pdf

    • 论文解读:https://liumin.blog.csdn.net/article/details/104371273


人像分割网络

人像分割网络包括:SINet。

  • SINet:Extreme Lightweight Portrait Segmentation Networks

    • 论文地址:https://arxiv.org/pdf/1911.09099.pdf

    • 论文解读:https://blog.csdn.net/shanglianlm/article/details/103931852

你可能感兴趣的:(九大卷积神经网络 ( CNN ) 的 PyTorch 实现)