1.消息队列的特性:
业务无关,一个具有普适性质的消息队列组件不需要考虑上层的业务模型,只做好消息的分发就可以了,上层业务的不同模块反而需要依赖消息队列所定义的规范进行通信。FIFO,先投递先到达的保证是一个消息队列和一个buffer的本质区别。容灾,对于普适的消息队列组件来说,节点的动态增删和消息的持久化,都是支持其容灾能力的重要基本特性。性能,这个不必多说了,消息队列的吞吐量上去了,整个系统的内部通信效率也会有提高。
2.为什么需要消息队列:
当系统中出现“生产“和“消费“的速度或稳定性等因素不一致的时候,就需要消息队列,作为抽象层,弥合双方的差异。“ 消息 ”是在两台计算机间传送的数据单位。消息可以非常简单,例如只包含文本字符串;也可以更复杂,可能包含嵌入对象。消息被发送到队列中,“ 消息队列 ”是在消息的传输过程中保存消息的容器 。
使用场景:
3.使用消息队列有什么好处(消息队列作用):
4.消息队缺点:
系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,偏加个MQ进来,万一MQ挂了,整套系统崩溃了。
系统复杂性提高:硬生生加个MQ进来,怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?
一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,这数据就不一致了。
1.RabbitMQ高可用
单机模式:Demo级别的,生产环境不会使用
普通集群模式:
同时部署多台RabbitMQ服务器,当生产者将消息发送到RabbitMQ的集群中时 ,消息会存在元数据(类似于消息的描述信息)+消息数据,收到消息的MQ会将消息的元数据信息同步到其他的节点上,当消费者从任意一台服务器上获取消息时,如果当前服务器存在该消息的数据信息就获取成功,否则就会根据元数据信息从其他节点上获取消息数据,这样做并没有保证MQ的高可用,因为存在消息数据的服务器挂掉,消息一样不存在,这样做只能保证MQ的吞吐量比较大。
采用镜像集群模式:
你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。 这样的话,好处在于,你任何一个机器宕机了,别的机器都可以用。坏处在于
开启镜像集群模式:rabbitmq有很好的管理控制台,在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
2.kafka的高可用
kafka一个最基本的架构认识:多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。
这就是天然的分布式消息队列,就是说一个topic的数据,是分散放在多个机器上的,每个机器就放一部分数据。kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。kafka 0.8以后,提供了HA机制,就是replica副本机制。每个partition的数据都会同步到其他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。只能读写leader?很简单,要是你可以随意读写每个follower,那么就要care数据一致性的问题,系统复杂度太高,很容易出问题。kafka会均匀的将一个partition的所有replica分布在不同的机器上,这样才可以提高容错性。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。
其实这个防止消息丢失,每种MQ都要从三个角度来分析:生产者弄丢数据、消息队列弄丢数据、消费者弄丢数据,以RabbitMQ为例:
1.生产者丢数据:
从生产者弄丢数据这个角度来看,RabbitMQ提供transaction和confirm模式来确保生产者不丢消息。transaction机制就是说,发送消息前,开启事务(channel.txSelect()),然后发送消息,如果发送过程中出现什么异常,事物就会回滚(channel.txRollback()),如果发送成功则提交事物(channel.txCommit())。然而缺点就是吞吐量下降了。因此,生产上用confirm模式的居多。一旦channel进入confirm模式,所有在该信道上面发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后,rabbitMQ就会发送一个Ack给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了.如果rabiitMQ没能处理该消息,则会发送一个Nack消息给你,你可以进行重试操作。
2.消息队列丢数据
处理消息队列丢数据的情况,一般是开启持久化磁盘的配置。这个持久化配置可以和confirm机制配合使用,你可以在消息持久化磁盘后,再给生产者发送一个Ack信号。这样,如果消息持久化磁盘之前,rabbitMQ阵亡了,那么生产者收不到Ack信号,生产者会自动重发。那么如何持久化呢,这里顺便说一下吧,其实也很容易,就下面两步:
将queue的持久化标识durable设置为true,则代表是一个持久的队列
发送消息的时候将deliveryMode=2
这样设置以后,rabbitMQ就算挂了,重启后也能恢复数据
3.消费者丢数据
消费者丢数据一般是因为采用了自动确认消息模式。这种模式下,消费者会自动确认收到信息。这时rahbitMQ会立即将消息删除,这种情况下如果消费者出现异常而没能处理该消息,就会丢失该消息。至于解决方案,采用手动确认消息即可。
1.幂等性:就是用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。举个最简单的例子,那就是支付,用户购买商品使用约支付,支付扣款成功,但是返回结果的时候网络异常,此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额返发现多扣钱了,流水记录也变成了两条
2.MQ消息发送
3.消息重复发送原因
为了保证消息必达,MQ使用了消息超时、重传、确认机制。使得消息可能被重复发送,如上图中,由于网络不可达原因:3和5中断,可能导致消息重发。消息生产者a收不到MQ-server的ACK,重复向MQ-server发送消息。MQ-server收不到消息消费者c的ACK,重复向消息消费者c发消息。
4.MQ内部如何做到幂等性的
对于每条消息,MQ内部生成一个全局唯一、与业务无关的消息ID:inner-msg-id。当MQ-server接收到消息时,先根据inner-msg-id判断消息是否重复发送,再决定是否将消息落地到DB中。这样,有了这个inner-msg-id作为去重的依据就能保证一条消息只能一次落地到DB。
5.消息消费者应当如何做到幂等性
6.结合业务思考