抽象队列同步器(AQS-AbstractQueuedSynchronizer)
从名字上来理解:
- 抽象:是抽象类,具体由子类实现
- 队列:数据结构是队列,使用队列存储数据
- 同步:基于它可以实现同步功能
我们就从这几个方面来入手解读,但首先,我们得先知道以下几个它的特点,以便于理解
AbstractQueuedSynchronizer特点
1.AQS可以实现独占锁和共享锁。
2.独占锁exclusive是一个悲观锁。保证只有一个线程经过一个阻塞点,只有一个线程可以获得锁。
3.共享锁shared是一个乐观锁。可以允许多个线程阻塞点,可以多个线程同时获取到锁。它允许一个资源可以被多个读操作,或者被一个写操作访问,但是两个操作不能同时访问。
4.AQS使用一个int类型的成员变量state来表示同步状态,当state>0时表示已经获取了锁,当state = 0无锁。它提供了三个方法(getState()、setState(int newState)、compareAndSetState(int expect,int update))来对同步状态state进行操作,可以确保对state的操作是安全的。
5.AQS是通过一个CLH队列实现的(CLH锁即Craig, Landin, and Hagersten (CLH) locks,CLH锁是一个自旋锁,能确保无饥饿性,提供先来先服务的公平性。CLH锁也是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋。)
抽象
我们来扒一扒源码可以看到它继承于AbstractOwnableSynchronizer
它是一个抽象类.
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable
AQS内部使用了一个volatile的变量state
来作为资源的标识。同时定义了几个获取和改变state的protected方法,子类可以覆盖这些方法来实现自己的逻辑.
可以看到类中为我们提供了几个protected级别的方法,它们分别是:
//创建一个队列同步器实例,初始state是0
protected AbstractQueuedSynchronizer() { }
//返回同步状态的当前值。
protected final int getState() {
return state;
}
//设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
//独占方式。尝试获取资源,成功则返回true,失败则返回false。
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
//独占方式。尝试释放资源,成功则返回true,失败则返回false。
protected boolean tryRelease(int arg) {
throw new UnsupportedOperationException();
}
//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源
protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}
//共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。
protected boolean tryReleaseShared(int arg) {
throw new UnsupportedOperationException();
}
这些方法虽然都是protected方法,但是它们并没有在AQS具体实现,而是直接抛出异常,AQS实现了一系列主要的逻辑
由此可知,AQS是一个抽象的
用于构建锁和同步器
的框架
,使用AQS能简单且高效地构造出应用广泛的同步器,比如我们提到的ReentrantLock
,Semaphore
,ReentrantReadWriteLock
,SynchronousQueue
,FutureTask
等等皆是基于AQS
的。
我们自己也能利用AQS非常轻松容易地构造出自定义的同步器,只要子类实现它的几个protected方法就可以了.
队列
AQS类本身实现的是具体线程等待队列的维护(如获取资源失败入队
/唤醒出队
等)。它内部使用了一个先进先出(FIFO)的双端队列(CLH),并使用了两个指针head和tail用于标识队列的头部和尾部。其数据结构如图:
队列并不是直接储存线程,而是储存
拥有线程的Node节点
。
我们来看看Node的结构:
static final class Node {
// 标记一个结点(对应的线程)在共享模式下等待
static final Node SHARED = new Node();
// 标记一个结点(对应的线程)在独占模式下等待
static final Node EXCLUSIVE = null;
// waitStatus的值,表示该结点(对应的线程)已被取消
static final int CANCELLED = 1;
// waitStatus的值,表示后继结点(对应的线程)需要被唤醒
static final int SIGNAL = -1;
// waitStatus的值,表示该结点(对应的线程)在等待某一条件
static final int CONDITION = -2;
//waitStatus的值,表示有资源可用,新head结点需要继续唤醒后继结点
//(共享模式下,多线程并发释放资源,而head唤醒其后继结点后,
//需要把多出来的资源留给后面的结点;设置新的head结点时,会继续唤醒其后继结点)
static final int PROPAGATE = -3;
// 等待状态,取值范围,-3,-2,-1,0,1
volatile int waitStatus;
volatile Node prev; // 前驱结点
volatile Node next; // 后继结点
volatile Thread thread; // 结点对应的线程
Node nextWaiter; // 等待队列里下一个等待条件的结点
// 判断共享模式的方法
final boolean isShared() {
return nextWaiter == SHARED;
}
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
// 其它方法忽略,可以参考具体的源码
}
// AQS里面的addWaiter私有方法
private Node addWaiter(Node mode) {
// 使用了Node的这个构造函数
Node node = new Node(Thread.currentThread(), mode);
// 其它代码省略
}
过Node我们可以实现两个队列,一是通过prev和next实现CLH队列(线程同步队列,双向队列),二是nextWaiter实现Condition条件上的等待线程队列(单向队列),这个Condition主要用在ReentrantLock类中
同步
两种同步方式:
- 独占模式(Exclusive):资源是独占的,一次只能一个线程获取。如ReentrantLock。
- 共享模式(Share):同时可以被多个线程获取,具体的资源个数可以通过参数指定。如Semaphore/CountDownLatch。
同时实现两种模式的同步类,如ReadWriteLock
获取资源
获取资源的入口是acquire(int arg)方法。arg是要获取的资源的个数,在独占模式下始终为1。
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
首先调用tryAcquire(arg)尝试去获取资源。前面提到了这个方法是在子类具体实现的
如果获取资源失败,就通过addWaiter(Node.EXCLUSIVE)方法把这个线程插入到等待队列中。其中传入的参数代表要插入的Node是独占式
的。这个方法的具体实现:
private Node addWaiter(Node mode) {
// 生成该线程对应的Node节点
Node node = new Node(Thread.currentThread(), mode);
// 将Node插入队列中
Node pred = tail;
if (pred != null) {
node.prev = pred;
// 使用CAS尝试,如果成功就返回
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 如果等待队列为空或者上述CAS失败,再自旋CAS插入
enq(node);
return node;
}
//AQS中会存在多个线程同时争夺资源的情况,
//因此肯定会出现多个线程同时插入节点的操作,
//在这里是通过CAS自旋的方式保证了操作的线程安全性。
// 自旋CAS插入等待队列
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
若设置成功就代表自己获取到了锁,返回true。状态为0设置1的动作在外部就有做过一次,内部再一次做只是提升概率,而且这样的操作相对锁来讲不占开销。
如果状态不是0,则判定当前线程是否为排它锁的Owner,如果是Owner则尝试将状态增加acquires(也就是增加1),如果这个状态值越界,则会抛出异常提示,若没有越界,将状态设置进去后返回true(实现了类似于偏向的功能,可重入,但是无需进一步征用)。
如果状态不是0,且自身不是owner,则返回false。
现在通过addWaiter方法,已经把一个Node放到等待队列尾部
了。而处于等待队列的结点是从头结点一个一个去获取资源的
。具体的实现我们来看看acquireQueued方法:
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
// 自旋
for (;;) {
final Node p = node.predecessor();
// 如果node的前驱结点p是head,表示node是第二个结点,就可以尝试去获取资源了
if (p == head && tryAcquire(arg)) {
// 拿到资源后,将head指向该结点。
// 所以head所指的结点,就是当前获取到资源的那个结点或null。
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 如果自己可以休息了,就进入waiting状态,直到被unpark()
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
这里parkAndCheckInterrupt方法内部使用到了LockSupport.park(this),顺便简单介绍一下park。
LockSupport类是Java 6 引入的一个类,提供了基本的线程同步原语。LockSupport实际上是调用了Unsafe类里的函数,归结到Unsafe里,只有两个函数:
park(boolean isAbsolute, long time):阻塞当前线程
unpark(Thread jthread):使给定的线程停止阻塞
所以结点进入等待队列后,是调用park使它进入阻塞状态
的。只有头结点的线程是处于活跃状态的。
acquire方法 获取资源的流程:
当然,获取资源的方法除了acquire外,还有以下三个:
- acquireInterruptibly:申请可中断的资源(独占模式)
- acquireShared:申请共享模式的资源
- acquireSharedInterruptibly:申请可中断的资源(共享模式)
可中断的意思是,在线程中断时可能会抛出InterruptedException
释放资源
释放资源相比于获取资源来说,会简单许多。在AQS中只有一小段实现。
源码:
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
tryRelease方法
这个动作可以认为就是一个设置锁状态的操作,而且是将状态减掉传入的参数值(参数是1),如果结果状态为0,就将排它锁的Owner设置为null,以使得其它的线程有机会进行执行。
在排它锁中,加锁的时候状态会增加1(当然可以自己修改这个值),在解锁的时候减掉1,同一个锁,在可以重入后,可能会被叠加为2、3、4这些值,只有unlock()的次数与lock()的次数对应才会将Owner线程设置为空,而且也只有这种情况下才会返回true。
这一点大家写代码要注意,如果是在循环体中lock()或故意使用两次以上的lock(),而最终只有一次unlock(),最终可能无法释放锁。导致死锁.
private void unparkSuccessor(Node node) {
// 如果状态是负数,尝试把它设置为0
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
// 得到头结点的后继结点head.next
Node s = node.next;
// 如果这个后继结点为空或者状态大于0
// 通过前面的定义我们知道,大于0只有一种可能,就是这个结点已被取消
if (s == null || s.waitStatus > 0) {
s = null;
// 等待队列中所有还有用的结点,都向前移动
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// 如果后继结点不为空,
if (s != null)
LockSupport.unpark(s.thread);
}
方法unparkSuccessor(Node),意味着真正要释放锁了,它传入的是head节点,内部首先会发生的动作是获取head节点的next节点,如果获取到的节点不为空,则直接通过:“LockSupport.unpark()”方法来释放对应的被挂起的线程.
关注公众号:java宝典