史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)

提示:通用map指标框架代码介绍,并基于yolo模型应用map指标计算代码解读

文章目录

  • 前言
  • 一、map模块整体认识
  • 二、map计算应用代码解读
  • 三、通用map计算指标代码解读
  • 四、基于yolov5使用通用map计算指标代码解读
    • 1、通用map指标计算模块整体结构说明
    • 2、参数构建
    • 3、数据准备
    • 4、模型初始化
    • 5、map指标计算函数(computer_main)代码解读
      • ①、获得图像相关路径及指标计算函数初始化
      • ②、获得类别
      • ③、生成gt的json文件
      • ④、图像预处理
      • ⑤、模型推理与后处理
      • ⑥、输出尺寸恢复
      • ⑦、生成预测json格式文件
      • ⑧、map指标计算
      • computer_main代码
    • 6、基于yolov5的map指标计算代码链接
  • 总结


前言

“史上最全AP、mAP详解与代码实现”文章(这里)已经介绍了map相关原理,且给出相应简单代码实现AP方法。然将AP计算融入模型求解AP结果,可能是一个较为复杂的工程量。恰好,我也有一些这样的需求,我是想计算相关DETR的map指标。我将构造一个即插即用计算map的相关模块代码,使用者只需赋值我的模块,即可使用。同时,为了更好快速使用,我将基于通用模型yolo为基准介绍map通用模块(你有疑问,yolo已有val.py可测试map,但yolo无法测出small、medium、large等相关AP或AP0.75等结果)。本文将直接介绍计算map核心代码简单列子,在此基础上介绍整个即插即用map计算模块使用方法与代码解读。


一、map模块整体认识

本文就是一个detection_map即插即用计算map指标模块,可计算任何模型map指标,但有效计算需要稍微修改部分代码,我后面将介绍。基于此,我将整理一份yolo模型的通用map框架代码。那么,本文将介绍2个内容,其一为简单计算map的一个列子,其原理可参考这里博客,我将这个列子传递到这里;其二为基于yolo模型介绍通用map模块计算方法map_yolo。其整体架构如下图:
史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)_第1张图片
注:我使用yolov5-6.1模型,仅将detection_map放入该位置,即可使用。

二、map计算应用代码解读

实现mAP计算,我们需要有已知真实标签与模型预测标签,按照pcocotools的格式生成真实标签与预测标签的json格式,即可实现map指标计算。

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
if __name__ == "__main__":
    cocoGt = COCO('coco_format.json')        #标注文件的路径及文件名,json文件形式
    cocoDt = cocoGt.loadRes('predect_format.json')  #自己的生成的结果的路径及文件名,json文件形式

    cocoEval = COCOeval(cocoGt, cocoDt, "bbox")
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()

介于我在这篇文章这里已有详细介绍,我将不在介绍。我这里只是上传了相应json文件与代码文件供读者快速实现与理解这里。

三、通用map计算指标代码解读

介于我在这篇文章这里已有详细介绍,我将不在介绍,文章参考内容如下图:
史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)_第2张图片
当然,你也可以在此网盘中下载map计算核心代码,链接如下:

链接:https://pan.baidu.com/s/1toQkeWGygo3tFMsFHFCnYA
提取码:apyo

四、基于yolov5使用通用map计算指标代码解读

这一部分也是本文最重要一部分,实际有关map原理内容或整体模块实现已在我推荐文章中,但推荐文章缺点是没有放置相应代码内容。而该部分就是直接给出基于yolov5模型调用map通用模块实现的相关代码或工程。

1、通用map指标计算模块整体结构说明

构建初始化模型,配置相关参数,直接使用computer_main函数集成,进行推理与map指标计算(整体如下图)。

史上最全AP、mAP通用代码实现(即插即用-基于yolo模型)_第3张图片

2、参数构建

我构建模型相关参数,如数据文件夹、权重及推理相关参数,特别是conf阈值与iou阈值需要关注,在yolov5的val.py指标计算设置conf阈值=0.001、iou阈值=0.6,这个根据自己情况而定。

def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--source', type=str, default= r'E:\project\data\voc_data\voc2007_data\images\test', help='dataset.yaml path')
    parser.add_argument('--weights', nargs='+', type=str,
                        default=r'E:\project\project_distilation\experiment\runs\train\yolo_x2s_iou-0.45_conf-0.85/weights/best.pt',
                        help='model.pt path(s)')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 

你可能感兴趣的:(目标检测,YOLO,map指标通用模块,基于yolov5模型应用,目标检测)