迭代器(iterator)有时又称光标(cursor)是程序设计的软件设计模式,可在容器对象(container,例如list或vector)上遍历访问的接口,通常来说就是访问容器(数据结构中保存)的元素。并且迭代器是分类型的,STL中的名字是类型的暗示(比如Inputiterator),迭代器的使用属性是正向访问以及反向访问;还有特性属性,严格来说还分单向双向随机,单链表的迭代器特性就是一个单向的,它只能++,不能--,双向链表的迭代器特性就是双向的,不仅能++,还能--。随机就是不仅能++,--,还能+,-,像string,vector就是随机的特性。
注:
list.h - iterator的实现:
template
struct __list_iterator
{
public:
typedef list_node node;
typedef __list_iterator self;
node* _node;
__list_iterator(node* x)
:_node(x)
{}
Ptr operator->()
{
return &_node->_data;
}
Ref operator*()
{
return _node->_data;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
self& operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self& operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};
这里实现正向迭代器的逻辑是左闭右开:
所以我们认为反向也应该是如此左闭右开:从最后一个有效元素开始访问,反向的++就是正向的--
这里怎样实现呢?很简单,再写一个类,修改下正向迭代器就可以了:
list.h - reverse_iterator① 的实现:
template
struct __list_reverse_iterator
{
public:
typedef list_node node;
typedef __list_reverse_iterator self;
node* _node;
__list_reverse_iterator(node* x)
:_node(x)
{}
Ptr operator->()
{
return &_node->_data;
}
Ref operator*()
{
return _node->_data;
}
self& operator++()
{
_node = _node->_prev;
return *this;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
self& operator++(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
self& operator--()
{
_node = _node->_next;
return *this;
}
self& operator--(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
bool operator==(const self& s)
{
return _node == s._node;
}
这里我们会发现有大量重复的代码,而c++又很讨厌这种代码的臃肿性,所以这里可以看一下stl的底层:
stl源码:
stl_list.h部分源码
template
class list {
protected:
typedef void* void_pointer;
typedef __list_node list_node;
typedef simple_alloc list_node_allocator;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef list_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
public:
typedef __list_iterator iterator;
typedef __list_iterator const_iterator;
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator const_reverse_iterator;
typedef reverse_iterator reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_bidirectional_iterator
const_reverse_iterator;
typedef reverse_bidirectional_iterator
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
这里可以发现,c++是使用类模板封装了正向迭代器,这里我们再继续往下看:
stl_iterator.h部分源码
template
class reverse_iterator
{
protected:
Iterator current;
public:
typedef typename iterator_traits::iterator_category
iterator_category;
typedef typename iterator_traits::value_type
value_type;
typedef typename iterator_traits::difference_type
difference_type;
typedef typename iterator_traits::pointer
pointer;
typedef typename iterator_traits::reference
reference;
typedef Iterator iterator_type;
typedef reverse_iterator self;
public:
reverse_iterator() {}
explicit reverse_iterator(iterator_type x) : current(x) {}
reverse_iterator(const self& x) : current(x.current) {}
#ifdef __STL_MEMBER_TEMPLATES
template
reverse_iterator(const reverse_iterator& x) : current(x.current) {}
#endif /* __STL_MEMBER_TEMPLATES */
iterator_type base() const { return current; }
reference operator*() const
{
Iterator tmp = current;
return *--tmp;
}
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
self& operator++() {
--current;
return *this;
}
self operator++(int) {
self tmp = *this;
--current;
return tmp;
}
self& operator--() {
++current;
return *this;
}
self operator--(int) {
self tmp = *this;
++current;
return tmp;
}
self operator+(difference_type n) const {
return self(current - n);
}
self& operator+=(difference_type n) {
current -= n;
return *this;
}
self operator-(difference_type n) const {
return self(current + n);
}
self& operator-=(difference_type n) {
current += n;
return *this;
}
reference operator[](difference_type n) const { return *(*this + n); }
};
可以看到stl底层 reverse_iterator 的实现,其实是使用了正向迭代器来进行封装,反向迭代器的 ++ 就是正向迭代器的 -- ,反向迭代器的 -- 就是正向迭代器的 ++ 。
stl_list.h部分源码
protected:
link_type node;
public:
list() { empty_initialize(); }
iterator begin()
{
return (link_type)((*node).next); //node是头指针,也就是_head
}
const_iterator begin() const { return (link_type)((*node).next); }
iterator end()
{
return node; //头指针
}
const_iterator end() const { return node; }
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
这时,我们发现,stl 底层 rbegin() 与 rend() 的位置与我们预料的不同:
我们实现的:rbegin() 是在最后一个有效数据位
实际上 stl 底层库:
这里很明显,c++更追求一种对称的效果,那么这样的话,在实现 operator*() 的时候就不能按照我们的思路,先来看看底层stl是怎样实现的:
这里我们会发现,stl 库里在实现 operator*() 的时候,返回的是迭代器当前位置的前一个位置
所以接下来我们需要重新实现一个类:因为stl 库里面是采用萃取来实现,太过于复杂,这里实现方式不同,我采用的是新增模板参数。
reverse_iterator.h
template
struct ReverseIterator //为了和库里进行区分,选择驼峰法
{
typedef ReverseIterator Self;
Iterator _cur;
ReverseIterator(Iterator it)
:_cur(it)
{}
Ref operator*()
{
Iterator tmp = _cur;
--tmp;
return *tmp;
}
Self& operator++()
{
--_cur;
return *this;
}
Self& operator--()
{
++_cur;
return *this;
}
bool operator!=(const Self& s)
{
return _cur != s._cur;
}
Self& operator++(int)
{
Self tmp(*this);
--_cur;
return tmp;
}
Self& operator--(int)
{
Self tmp(*this);
++_cur;
return tmp;
}
bool operator==(const Self& s)
{
return _cur == s._cur;
}
};
写到这里,也许很多人都会有一个疑问,这也是实现一个类,好像跟reverse_iterator①没有什么不同,代码上并没有节省,还不如reverse_iterator① 来的更通俗易懂,为什么要如此大费周章?
其实这里反向迭代器采用适配器的模式其实是为了复用,仔细想想list 的反向迭代器可以拷贝一份正向迭代器进行修改,那vector呢(注:具体可以查看vector的底层实现,这里iterator采用的原生指针),而实现 reverse_iterator.h 不仅仅是list可以使用,在这里只要是任何一个双向迭代器的容器都可以进行复用 。例如:
至此,我们需要明白反向迭代器就是正向迭代器,不过是用类来进行封装。反向迭代器去封装正向迭代器,跟正向迭代器去封装指针没有任何本质的区别,物理空间上没都没有进行改变,都是对应那个地址,只是类型决定了是正向还是反向,而类型里面的 operator++() ,operator--() , operator*() ,这些都是根据使用者的需求来定义的,这套类的规则是使用者来定义的。
附上所有示例代码:
reverse_iterator.h
#pragma once
namespace dwr
{
template
struct ReverseIterator //为了和库里进行区分,选择驼峰法
{
typedef ReverseIterator Self;
Iterator _cur;
ReverseIterator(Iterator it)
:_cur(it)
{}
Ref operator*()
{
Iterator tmp = _cur;
--tmp;
return *tmp;
}
Self& operator++()
{
--_cur;
return *this;
}
Self& operator--()
{
++_cur;
return *this;
}
bool operator!=(const Self& s)
{
return _cur != s._cur;
}
Self& operator++(int)
{
Self tmp(*this);
--_cur;
return tmp;
}
Self& operator--(int)
{
Self tmp(*this);
++_cur;
return tmp;
}
bool operator==(const Self& s)
{
return _cur == s._cur;
}
};
}
list.h
#pragma once
#include "reverse_iterator.h"
namespace dwr
{
template
struct list_node //链表节点
{
list_node* _prev;
list_node* _next;
T _data;
list_node(const T& x = T())
:_prev(nullptr)
, _next(nullptr)
, _data(x)
{}
};
template
struct __list_iterator
{
public:
typedef list_node node;
typedef __list_iterator self;
node* _node;
__list_iterator(node* x)
:_node(x)
{}
Ptr operator->()
{
return &_node->_data;
}
Ref operator*()
{
return _node->_data;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
self& operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self& operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};
/*
template
struct __list_reverse_iterator
{
public:
typedef list_node node;
typedef __list_reverse_iterator self;
node* _node;
__list_reverse_iterator(node* x)
:_node(x)
{}
Ptr operator->()
{
return &_node->_data;
}
Ref operator*()
{
return _node->_data;
}
self& operator++()
{
_node = _node->_prev;
return *this;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
self& operator++(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
self& operator--()
{
_node = _node->_next;
return *this;
}
self& operator--(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};
*/
template
class list
{
typedef list_node node;
public:
typedef __list_iterator iterator;
typedef __list_iterator const_iterator;
//typedef __list_reverse_iterator reverse_iterator;
typedef ReverseIterator reverse_iterator;
typedef ReverseIterator const_reverse_iterator;
reverse_iterator rbegin()
{
reverse_iterator tmp(end());
return tmp;
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
/*
reverse_iterator rbegin()
{
reverse_iterator tmp(_head->_prev);
return tmp;
}
reverse_iterator rend()
{
return reverse_iterator(_head);
}
*/
void empty_init() //初始化头节点
{
_head = new node;
_head->_next = _head;
_head->_prev = _head;
}
list()
{
empty_init();
}
void swap(list& tmp)
{
std::swap(_head, tmp._head);
}
//现代写法
list(const list& lt)
{
empty_init();
list tmp(lt.begin(), lt.end());
swap(tmp);
}
template
list(Iterator first, Iterator last)
{
empty_init();
while (first != last)
{
push_back(*first);
first++;
}
}
//lt2 = lt1
list& operator=(list lt)
{
swap(lt);
return *this;
}
iterator begin()
{
iterator tmp(_head->_next);
return tmp;
}
iterator end()
{
return iterator(_head);
}
const_iterator begin() const
{
const_iterator tmp(_head->_next);
return tmp;
}
const_iterator end() const
{
return const_iterator(_head);
}
void push_back(const T& x)
{
node* tail = _head->_prev;
node* newnode = new node(x);
tail->_next = newnode;
newnode->_prev = tail;
newnode->_next = _head;
_head->_prev = newnode;
}
void push_front(const T& x)
{
insert(begin(), x);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
iterator erase(iterator pos)
{
assert(pos != end());
node* next = pos._node->_next;
node* prev = pos._node->_prev;
next->_prev = prev;
prev->_next = next;
delete pos._node;
return iterator(next);
}
void insert(iterator pos, const T& x)
{
node* cur = pos._node;
node* prev = cur->_prev;
node* new_node = new node(x);
prev->_next = new_node;
new_node->_next = cur;
new_node->_prev = prev;
cur->_prev = new_node;
}
void clear()
{
iterator it = begin();
while (it != end())
{
erase(it++);
}
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
private:
node* _head;
};
//------------------------------------------------
void print_list(const list& lt)
{
list::const_iterator it = lt.begin();
while (it != lt.end())
{
//(*it) *= 2;
cout << *it << " ";
++it;
}
cout << endl;
}
void list_test1()
{
list lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
lt.push_back(5);
list::iterator it = lt.begin();
while (it != lt.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void list_test2()
{
list lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
lt.push_back(5);
list::reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
}
}
vector.h
#pragma once
#include "reverse_iterator.h"
namespace dwr
{
template
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
typedef ReverseIterator reverse_iterator;
typedef ReverseIterator const_reverse_iterator;
reverse_iterator rbegin()
{
reverse_iterator tmp(end());
return tmp;
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin() const
{
return _start;
}
const_iterator end() const
{
return _finish;
}
vector()
{}
vector(size_t n, const T& val = T())
{
reserve(n);
for (size_t i = 0; i < n; ++i)
{
push_back(val);
}
}
vector(int n, const T& val = T())
{
reserve(n);
for (int i = 0; i < n; ++i)
{
push_back(val);
}
}
//[first,last)
template
vector(InputIterator first, InputIterator last)
{
while (first != last)
{
push_back(*first);
first++;
}
}
void reserve(size_t n)
{
if (n > capacity())
{
T* tmp = new T[n];
size_t sz = size();
if (_start)
{
for (size_t i = 0; i < sz; ++i)
{
tmp[i] = _start[i];
}
delete[] _start;
}
_start = tmp;
_finish = _start + sz;
_end_of_storage = _start + n;
}
}
void resize(size_t n, T val = T())
{
if (n < size())
{
//删除数据
_finish = _start + n;
}
else
{
if (n > capacity())
{
reserve(n);
}
while (_finish != _start + n)
{
//注:这里如果实现逻辑是使用内存池,需要使用定位new来对已有空间进行初始化
*_finish = val;
++_finish;
}
}
}
iterator insert(iterator& pos, const T& val)
{
assert(pos >= _start && pos <= _finish);
if (_finish == _end_of_storage)
{
size_t len = pos - _start;
reserve(capacity() == 0 ? 4 : capacity() * 2);
//扩容后 更新pos
pos = pos + len;
}
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = val;
_finish++;
return pos;
}
iterator erase(iterator pos)
{
assert(pos >= _start && pos <= _finish);
iterator remove = pos + 1;
while (remove != _finish)
{
*(remove - 1) = remove;
remove++;
}
--_finish;
return pos;
}
void push_back(const T& x)
{
if (_finish == _end_of_storage)
{
reserve(capacity() == 0 ? 4 : capacity() * 2);
}
*_finish = x;
_finish++;
}
void pop_back()
{
assert(!empty());
--_finish;
}
bool empty()
{
return _start == _finish;
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos) const
{
assert(pos < size());
return _start[pos];
}
size_t size() const
{
return _finish - _start;
}
size_t capacity() const
{
return _end_of_storage - _start;
}
void swap(vector& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_end_of_storage, v._end_of_storage);
}
vector& operator=(vector v)
{
swap(v);
return *this;
}
vector(const vector& v)
{
_start = new T[v.capacity()];
for (size_t i = 0; i < v.size(); ++i)
{
_start[i] = v._start[i];
}
_finish = _start + v.size();
_end_of_storage = _start + v.capacity();
}
//vector(const vector& v)
//{
// vector tmp(v.begin(), v.end());
// swap(tmp);
//}
~vector()
{
//cout << _start << endl;
delete[] _start;
_start = _finish = _end_of_storage;
}
private:
iterator _start = nullptr;
iterator _finish = nullptr;
iterator _end_of_storage = nullptr;
};
void test_vector()
{
vector v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
for (size_t i = 0; i < v.size(); ++i)
{
cout << v[i] << " ";
}
cout << endl;
vector::iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void test_vector2()
{
vector v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
vector::reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
}
}
test.cpp
#include
#include
#include
#include
#include
using namespace std;
#include "list.h"
#include "vector.h"
#include "reverse_iterator.h"
int main()
{
dwr::list_test();
dwr::test_vector();
dwr::list_test2();
dwr::test_vector2();
return 0;
}
以上仅代表个人观点,欢迎讨论