- 深度学习-图像数据标注工具使用(LabelImg和BBox)
AI研习图书馆
方法教程LabelImgBBox图像标注工具
文章与视频资源多平台更新微信公众号|知乎|B站|头条:AI研习图书馆深度学习、大数据、IT编程知识与资源分享,欢迎关注,共同进步~图像数据标注工具的使用教程1.LabelImgLabelImg下载地址:https://github.com/tzutalin/labelImg(下载源码,需要编译)Windows和Linux系统可运行软件:http://tzutalin.github.io/label
- 探索Labelbox:打造自定义标注应用的利器!
孔旭澜Renata
探索Labelbox:打造自定义标注应用的利器!去发现同类优质开源项目:https://gitcode.com/项目介绍Labelbox是一款专为企业级客户设计的高级数据标注工具。它允许用户构建自己的定制标注界面(编辑器),提供强大的API和SDK,以适应各种复杂的数据标注需求。无论你是人工智能研究者、数据科学家还是软件开发者,Labelbox都能帮助你高效、精准地处理你的数据。技术分析Label
- GPU架构(1.2)--GPU SoC 中的 CPU 架构
小蘑菇二号
手把手教你学GPUSoC芯片智能电视
目录详细介绍GPUSoC中的CPU架构1.CPU核心概述ARMCortex-A72ARMCortex-A762.多线程处理多核架构多线程支持3.任务调度任务调度器动态调度4.内存管理内存层次结构内存管理技术5.接口和通信总线接口I/O接口6.功耗和热管理功耗优化热管理7.应用实例边缘计算图形处理深度学习结语详细介绍GPUSoC中的CPU架构GPUSoC不仅集成了高性能的GPU,还集成了高性能的CP
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 开源LLMs导览:工作原理、顶级LLM列表对比
万俟淋曦
SomeInsights人工智能AI生成式人工智能大模型LLMchatgpt大语言模型
机器人、人工智能相关领域news/events(专栏目录)本文目录一、开源LLM是什么意思?二、开源LLM如何工作?2.1预训练2.2代币化2.3开源LLM的微调2.4输入编码2.5训练与优化2.6推理三、开源LLM对组织的好处3.1增强的数据安全和隐私3.2节约成本3.3减少供应商依赖性3.4代码透明度四、哪种LLM模式最好?4.1BERT4.2LLaMA(LargeLanguageModelM
- Python软体中使用Scikit-learn库训练简单线性回归模型
清水白石008
Python题库pythonpythonscikit-learn线性回归
Python软体中使用Scikit-learn库训练简单线性回归模型1.引言作为数据科学家和机器学习从业者,我们经常需要处理各种类型的数据,并从中提取有价值的信息。其中,线性回归是最基础也是最常用的机器学习算法之一。它可以帮助我们预测连续型目标变量,在很多实际应用场景中都有广泛应用,比如房价预测、销量预测等。在本文中,我将使用Python的Scikit-learn库,介绍如何训练一个简单的线性回归
- 超实用的Python机器学习教程 - 基于scikit - learn库
AI_DL_CODE
人工智能python机器学习人工智能
一、机器学习简介机器学习的定义与概念机器学习是一门多领域交叉学科,它涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单来说,机器学习是让计算机从数据中学习规律并进行预测或决策的技术。它旨在构建能够自动从数据中学习模式并进行改进的算法,而无需被明确编程来执行特定任务。例如,我们可以让机器学习算法通过分析大量的历史天气数据来预测未来的天气情况,或者通过分析用户的购物历史来推荐可能感兴趣
- MixRec: Heterogeneous Graph Collaborative Filtering
UnknownBody
Recommendation人工智能
本文是深度学习相关文章,针对《MixRec:HeterogeneousGraphCollaborativeFiltering》的翻译。MixRec:异构图协同过滤摘要1引言2前言3方法4评估5相关工作6结论摘要对于现代推荐系统来说,使用低维潜在表示来嵌入用户和基于他们观察到的交互的项目已经变得司空见惯。然而,许多现有的推荐模型主要是为粗粒度和同质交互而设计的,这限制了它们在两个关键维度上的有效性。
- LearnLM: Improving Gemini for Learning
UnknownBody
LLMDaily语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LearnLM:ImprovingGeminiforLearning》的翻译。LearnLM:提升Gemini的学习能力摘要1引言2建模3人类评价设计4结果5结论摘要今天的生成式人工智能系统默认情况下会呈现信息,而不是像人类导师那样让用户参与学习服务。为了解决这些系统的广泛潜在教育用例,我们将注入教学行为的挑战重新定义为一种教学指导,其中培训和评估示例包括描述后续模型中
- 【python】利用 GridSearchCV 和 SVM 进行学生成绩预测
码银
支持向量机机器学习人工智能
在机器学习领域,寻找最优模型参数是一个重要的步骤,它直接影响模型的泛化能力和预测准确性。本文将通过一个具体案例介绍如何使用支持向量机(SVM)和网格搜索(GridSearchCV)来预测学生的成绩,并通过调整参数来优化模型性能。数据集:公众号“码银学编程”后台回复:学生成绩-SVM前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:前言–人工智能教程引言学生的成绩预测
- 机器学习笔记——特征工程
好评笔记
补档机器学习人工智能论文阅读AIGCtransformer深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。文章目录特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自动特征提取(AutomatedFeatureExtraction):2.特征选择
- 深度学习论文: Cultivated Land Extraction from High-Resolution Remote Sensing Image
mingo_敏
PaperReadingDeepLearningInstanceSegmentationpython人工智能机器学习
深度学习论文:CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImageTheWinningSolutiontotheiFLYTEKChallenge2021CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImagePDF:https://arxiv.org/pdf/22
- 不同物体运动方向的检测-python
人工智能专属驿站
python开发语言
方法优点适用场景缺点光流法实时性强、支持稠密方向分析视频流中物体整体运动对背景复杂场景鲁棒性差特征点跟踪精确捕捉局部运动特征点明显的物体特征点丢失影响结果帧间差分简单快速,适合实时检测背景稳定、低复杂度场景对噪声和阴影敏感深度摄像头三维方向检测,抗背景干扰能力强需要深度信息的场景需要特殊硬件,成本较高惯性传感器不依赖视觉,适用环境广泛设备本体的运动分析精度受传感器噪声影响机器学习能适应复杂非线性场
- 【学术会议征稿-第二届生成式人工智能与信息安全学术会议(GAIIS 2025)】人工智能与信息安全的魅力
禁默
学术会议人工智能
重要信息时间:2025年2月21日-23日地点:中国杭州官网:http://www.ic-gaiis.org简介2025年第二届生成式人工智能与信息安全将于2025年2月21日-23日在中国杭州举行。主要围绕“生成式人工智能与信息安全”的最新研究展开,紧密聚焦AI的热点和难点问题,深入剖析信息安全核心技术。生成式人工智能与信息安全的关系主要体现在以下几个方面:数据安全:生成式人工智能通常需要大量的
- 《解锁AI黑科技:数据分类聚类与可视化》
人工智能深度学习数据挖掘
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 大模型开发流程及项目实战
辣椒种子
机器学习人工智能
一、大模型开发整理流程1.1、什么是大模型开发我们将开发以大语言模型为功能核心、通过大语言模型的强大理解能力和生成能力、结合特殊的数据或业务逻辑来提供独特功能的应用称为大模型开发。开发大模型相关应用,其技术核心点虽然在大语言模型上,但一般通过调用API或开源模型来实现核心的理解与生成,通过PromptEnginnering来实现大语言模型的控制,因此,虽然大模型是深度学习领域的集大成之作,大模型开
- 园区智能化系统实现管理与服务的智能化转型与创新进阶
快鲸智慧楼宇管理系统
其他
内容概要园区智能化系统的出现,标志着管理与服务向智能化转型的重要一步。这一系统不仅仅是一个技术解决方案,更是一个全面提升园区运营效率与安全性的独特工具。通过集成大数据分析、物联网和人工智能,园区智能化系统能够为各类园区如工业园、产业园、物流园、写字楼与公寓等提供切实可行的解决方案。“智能化管理不仅是未来的发展趋势,更是提升竞争力的必要手段。”在资产管理方面,智能化系统能够实时监控并优化资源的配置,
- 注意力机制
追光少年3322
深度学习深度学习自然语言处理python
1.Seq2Seq模型加入注意力机制1.1Seq2Seq模型编码器:将长度可变的输入序列转换成形状固定的上下文变量c,并将输入序列的信息在该上下文变量中进行编码。解码器:解码器的输入序列的第一个词元为:特定的序列开始词元使用RNN编码器的最终隐状态来初始化解码器的隐状态编码器的最终隐状态都作为解码器输入序列的一部分。这样做的好处是防止随着时间的传递经过复杂的运算,原始的代表上下文的隐状态被遗忘。1
- DeepSeek R1本地化部署与联网功能实战指南:从零搭建智能对话系统
Coderabo
pythonDeepSeekR1
前言在人工智能技术快速发展的今天,如何将先进的对话模型DeepSeekR1部署到本地环境并赋予其联网能力,成为许多开发者和企业关注的重点。本文将深入讲解完整的本地化部署流程,并通过实例代码演示如何为模型添加实时网络访问功能。一、环境准备与基础架构1.1硬件需求推荐配置:NVIDIAGPU(RTX3090或更高)+32GB内存+50GB存储空间最低配置:CPU(支持AVX2指令集)+16GB内存+3
- Meta首席科学家Yann LeCun预言:5年内AI架构将颠覆,当前大模型的4大核心缺陷
机器小乙
人工智能
✨引言:一场颠覆AI行业的预言在2025冬季达沃斯“技术辩论”现场,Meta首席AI科学家、图灵奖得主杨立昆(YannLeCun)抛出一个震撼观点:“当前的大语言模型(LLM)范式将在3-5年内被淘汰。”这位深度学习先驱的论断,不仅直指ChatGPT等明星产品的技术天花板,更揭示了下一代AI进化的核心路径——构建理解物理世界的“世界模型”(WorldModel)。作为Meta人工智能实验室负责人,
- AI编程风潮下的生产力革命:从 Copilot 到 Trae
机器小乙
AI编程
AI编程风潮下的生产力革命:从Copilot到Trae前言在人工智能飞速发展的背景下,“AI编程”已经不再是概念炒作,而逐渐成为真实可落地的开发模式。从最初的GitHubCopilot到如今字节跳动的Trae,以及各种聚焦不同场景的AI编程产品如Cursor、Bolt.new、ReplitGhostwriter等,都在加速软件研发流程。本文将结合一些常见使用场景,并通过简短代码示例,让你对AI编程
- 【小白学AI系列】NLP 核心知识点(五)Transformer介绍
Blankspace空白
人工智能自然语言处理transformer
TransformerTransformer是一种基于自注意力机制(Self-AttentionMechanism)的深度学习模型,首次由Vaswani等人于2017年在论文《AttentionisAllYouNeed》中提出。与RNN和LSTM不同,Transformer不需要依靠序列顺序进行递归,而是通过全局注意力机制一次性处理整个输入序列,从而具备了更高的计算效率和更强的并行化能力。Tran
- 昆虫机器人:从仿生设计到未来应用
机器小乙
机器人
目录引言:从科幻到现实的启示仿生昆虫机器人:技术突破与功能解析应用场景:农业与灾后救援的革新技术难点:微型机器人研发的挑战未来趋势:智能化与群体协作的潜力总结:昆虫机器人技术的广阔前景1.引言:从科幻到现实的启示还记得阿西莫夫的《奇幻之旅》吗?科学家通过微型潜艇进入人体进行探险,这种场景曾是科幻迷的梦想。如今,随着人工智能和仿生设计的发展,这些奇思妙想正在逐步成为现实。最近,《科学机器人》期刊的一
- 【AI人工智能】DeepSeek R1:你需要知道的一切
大名顶顶
人工智能人工智能AIDeepSeek程序员计算机编程开源
我们将在本博客中介绍的关于DeepSeekR1的所有你需要知道的一切内容,请坚持认真读完,必有收获:DeepSeekR1简要概述主要特点与能力开源与可访问性模型架构强化学习训练变体与精简模型使用案例与应用从专有模型迁移到开源模型1.DeepSeekR1简要概述大语言模型(LLM)研究领域正在迅速发展,每一个新模型都在推动机器能力的边界。DeepSeekR1是由DeepSeek于2025年1月20日
- 机器学习强基计划7-6:图文详解层次聚类AGNES算法(附Python实现)_agnes聚类算法python代码
软件开发Java
2024年程序员学习机器学习算法聚类
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- Day31-【AI思考】-深度学习方法论全解析——科学提升学习效率的终极指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录深度学习方法论全解析——科学提升学习效率的终极指南**一、影子跟读法(Shadowing)——听力突破核武器****二、番茄工作法(Pomodoro)——时间管理手术刀****三、费曼技巧(FeynmanTechnique)——知识内化加速器****四、康奈尔笔记(CornellNotes)——信息处理引擎**效能倍增组合技常见问题解决方案深度学习方法论全解析——科学提升学习效率的终极指南
- 【人工智能时代】-Deepseek用到的技术架构
xiaoli8748_软件开发
人工智能
以下是DeepSeek技术架构的详细介绍:1.混合专家架构(MoE)DeepSeek-V3采用了混合专家(Mixture-of-Experts,MoE)架构,这种架构通过将模型分解为多个“专家”网络来处理不同的输入特征。具体配置如下:层数:61层,其中58层为MoE层。专家数量:每层有257个专家(1个共享专家+256个路由专家),整个模型共有14,906个专家。激活机制:每个Token激活9个专
- Chrome浏览器删除网站cookies的解决方案
爱编程的喵喵
Windows实用技巧chromecookiecookies
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Chrome浏览器删除网站cooki
- 当区块链遇见AI:智能合约如何驱动下一代 DApps
威哥说编程
人工智能区块链ai
随着区块链技术和人工智能(AI)在各自领域的迅速发展,二者的结合逐渐成为了推动未来技术创新的重要力量。特别是在去中心化应用(DApps)领域,区块链与AI的结合有可能彻底改变我们对智能合约、数据处理、决策制定等方面的理解。智能合约(SmartContracts)作为区块链的核心组成部分,能够在无信任环境下自动执行合同条款。而AI则能赋予智能合约“自主学习”和“智能决策”的能力,使得DApps的功能
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23