- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 字节跳动抖音电商2-2 算法 20220331
史上最强的弟子
字节面试算法算法字节
题目:////n==nums.length//1<=n<=104//0<=nums[i]<=n//nums中的所有数字都独一无二//给定一个包含[0,n]中n个数的数组nums,找出[0,n]这个范围内没有出现在数组中的那个数。//输入:nums=[3,0,1]//输出:2//解释:n=3,因为有3个数字,所以所有的数字都在范围[0,3]内。2是丢失的数字,因为它没有出现在nums中。packag
- 解锁数据潜能——亮数据Web数据集,精准、全面、即时
程序猿追
其他领域嵌入式效率性能优化科技计算机外设
解锁数据潜能——亮数据Web数据集,精准、全面、即时在数据驱动的时代,获取高质量的网络数据成为许多企业与研究机构的核心需求。亮数据推出的Web数据集产品,试图通过技术手段解决传统数据采集中的痛点,为使用者提供更高效的数据支持方案。该数据集的核心优势体现在三个维度:数据精准度、覆盖全面性和更新即时性。在精准度方面,通过动态IP网络与智能解析算法的结合,有效降低了传统爬虫常遇到的反爬干扰,使获取的数据
- AI+大数据:社交网络分析在金融风控中的完整流程
AI智能应用
AI大模型应用入门实战与进阶人工智能大数据ai
AI+大数据:社交网络分析在金融风控中的完整流程关键词:AI、大数据、社交网络分析、金融风控、完整流程摘要:本文详细讲述了在金融风控领域运用AI和大数据进行社交网络分析的完整流程。通过通俗易懂的语言,从背景知识入手,解释核心概念,阐述算法原理,分享项目实战经验,探讨实际应用场景,推荐相关工具资源,展望未来发展趋势与挑战,旨在让读者全面了解这一复杂技术在金融风控中的应用。背景介绍目的和范围我们的目的
- AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
格图素书
人工智能深度学习
目录前言算法原理摄像头在自动驾驶中的作用与意义分类按通信协议区分按不同感光芯片按像元排列方式摄像头核心关键指标多传感器融合在自动驾驶中的应用▲不同自动驾驶等级的传感器配置▲L2级别▲L2+/3级别▲L4/5级别摄像头的种类与应用车载智能前视像头关键参数如何选择摄像头全车摄像头布置及功能前视摄像头环视摄像头后视摄像头侧视摄像头内置/外置后视摄像头雷达的种类与应用摄像头与雷达的数量配置产业与行业现状摄
- 计算机网络深度解析:HTTPS协议架构与安全机制全揭秘(2025演进版)
知识产权13937636601
计算机计算机网络https架构
摘要2025年全球HTTPS流量占比达99.7%(W3Techs数据),本文系统剖析HTTPS协议的技术演进与安全机制。从加密算法体系(国密SM2/3/4vsRSA/ECC)、TLS1.3协议超时优化、后量子密码迁移路径三大突破切入,结合OpenSSL3.2、BoringSSL实战案例,详解协议握手时延降低80%的底层逻辑,并首次公开混合加密、证书透明度、密钥交换攻击防御等关键工程部署策略,为开发
- JVM GC学习记录
不会吃萝卜的兔子
JVMGCjvm学习javaGC
垃圾标记算法:引用计数:解决不了垃圾对象循环引用问题。root扫描(可达性分析):从根对象(线程、main函数、静态变量、常量)扫描。三色标记:黑:其下所有子树,引用均被标记完成,是存活的最终状态。灰:其下所有子树,但引用的对象尚未完全检查,是存活的过渡状态。白:对象未被标记,默认初始状态,标记结束后仍为白色的对象将被回收。标记时会STW扫描根节点,然后标记线程与业务线程并行存在;会产生情况2,业
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?
Echo_Wish
Python!实战!python自动驾驶开发语言
Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?今天咱们聊聊一个非常火但又特别实用的技术方向——自动驾驶仿真。具体点,就是用Python怎么玩转微软出品的自动驾驶仿真平台AirSim。别看名字叫AirSim,实际上它不仅支持无人机,还对自动驾驶汽车的模拟提供了强大支持。自动驾驶不是科幻,背后需要海量数据、复杂算法和大量实车测试。而现实世界测试成本高、风险大,怎么
- .net密码加密解密AES
步、步、为营
网络服务器运维.net
.NET中使用AES进行密码加密解密技术解析在当今数字化的时代,数据安全至关重要。密码作为保护个人和敏感信息的第一道防线,其加密和解密的安全性显得尤为重要。AES(AdvancedEncryptionStandard)作为一种广泛使用的对称加密算法,在.NET中也有着很好的支持。本文将深入探讨在.NET中如何使用AES算法进行密码的加密和解密。什么是AES算法AES,即高级加密标准,它是美国联邦政
- 【随机数真的是随机数吗?】
¥-oriented
其他
在计算机科学中,随机数是一个非常有趣且复杂的话题。我们常常在各种应用程序中看到随机数的应用,比如游戏、加密、统计模拟等。然而,许多人可能并不清楚计算机生成的随机数到底有多“随机”。本文将详细解释程序中的随机数,探讨其生成机制以及不同类型的随机数。伪随机数与真随机数首先,我们需要明确两个关键概念:伪随机数和真随机数。伪随机数(PseudorandomNumbers):伪随机数是由计算机算法生成的数字
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- LeetCode 热题 100 - 贪心算法 - 买卖股票的最佳时机 - javascript
Jxxli
LeetCodehot100leetcode算法贪心算法javascript
题目给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。示例1:输入:[7,1,5,3,6,4]输出:5解释:在第2天(股票价格=1)的时候买入,在第5天(股票价格=6)的时候卖出,
- 【算法系列】买卖股票的最佳时机【JS代码】
DTcode7
算法系列#前端基础入门三大核心之JS算法javascript最佳时机
【算法系列】买卖股票的最佳时机【JS代码】问题描述基本概念和作用说明解决方案暴力解法一次遍历法代码示例总结与讨论在前端开发中,虽然我们主要关注的是构建用户界面和交互逻辑,但掌握一些基本的算法和数据结构知识也是非常有用的。今天,我们就来探讨一个经典的问题:“买卖股票的最佳时机”。这个问题看似与前端开发无关,但实际上,它背后的算法思想对于优化我们的程序和解决问题有着极大的帮助。问题描述假设你有一个数组
- 买卖股票的最佳时机--js 算法
stoneSkySpace
算法javascript数据结构
一、买卖股票的最佳时机给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0;贪心算法:每次发现更低价格立即更新买入点(minPrice)每次发现更高利润立即更新卖出收益(maxProf
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- CppCon 2018 学习:A Little Order! Delving into the STL sorting algorithms
虾球xz
CppCon学习c++排序算法
记录一下一个编译器加密的算法#include#include#include#include#include#include#includenamespacedetail{//编译期伪随机key:每个字符对应不同keytemplateconstexprstd::uint8_tkey8(){returnstatic_cast((N*31+57)^0xAA);}}//namespacedetail//
- 使用c++编写一段人脸识别眨眼检测的代码
语嫣凝冰
c++opencv计算机视觉图像处理开发语言
我可以给你一些大致的步骤:使用摄像头或图像文件获取视频帧。使用人脸检测算法检测视频帧中的人脸。对检测到的人脸进行眼睛检测。判断眼睛是否闭合,如果是则认为该人在眨眼。以下是一段使用OpenCV库编写的C代码示例:```#include#include#include#includeusingnamespacestd;usingnamespacecv;intmain(){//使用摄像头获取视频帧Vid
- 欧盟AI法案、中国《生成式AI管理办法》规范数据隐私与算法歧视
DK_Allen
大模型人工智能算法
一、全球AI治理框架:双轨并行1.欧盟《AI法案》(2025全面生效)风险等级监管要求典型场景不可接受风险全面禁止社会评分系统、实时生物识别(公共场所)高风险强制注册+第三方评估+人工监督医疗诊断、关键基础设施管理有限风险透明度披露(AI生成内容标注)聊天机器人、深度伪造最小风险无限制垃圾邮件过滤、游戏AI处罚机制:最高罚金≈全球营收6%(或3000万欧元,取较高者)典型判例:ClearviewA
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- AWS WebRTC: 判断viewer端拉流是否稳定的算法
Jasper张
AWSWebRTCwebrtcaws服务器linux
在使用sdk-cviewer端进行拉流的过程中,viewer端拉取的是视频帧和音频帧,不会在播放器中播放,所以要根据收到的流来判断拉流过程是否稳定流畅。我这边采用的算法是:依据相邻帧之间的时间间隔是否落在期望值的±20%范围内。音频帧、视频帧的日志打印如下:07:19:26.263VERBOSEsampleAudioFrameHandler():AudioFramereceived.TrackId
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)
吃兔子的大脑腐
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于改进粒子群算法的混合储能系统容量优化研究一、混合储能系统容量优化的背景与挑战1.混合储能系统的定义与组成2.容量优化的核心目标3.优化面临的挑战二、传统粒子群算法的局限性及其改进策略1.传统PSO的缺陷2.改进粒子群算法的核心方法三、改进PSO在HESS容量
- 归并排序详解
创建两个临时数组存储待合并的子数组使用双指针法依次比较两个子数组的元素将较小的元素放入原数组的对应位置处理剩余未合并的元素前言1.算法概述归并排序是一种采用分治法(DivideandConquer)策略的排序算法,由约翰·冯·诺伊曼在1945年提出。它的核心思想是将一个大问题分解成若干个小问题,递归解决小问题后,再将结果合并起来。分治策略分解:将当前区间一分为二解决:递归地对两个子区间进行排序合并
- AI实践:智能工单系统的技术逻辑与应用
合力亿捷-小亿
人工智能机器学习
在当今数字化浪潮下,智能工单系统正逐渐成为企业服务管理的核心利器。智能工单系统,是依托前沿技术,将传统工单流程智能化、自动化的一套体系,它贯穿于企业服务的各个环节,从客户需求提交,到任务分配、进度跟踪,再到问题解决反馈,全方位覆盖。在企业服务管理中,其扮演着关键角色。一方面,它能极大提高服务效率,通过智能算法快速精准地将工单派发给最合适的人员,减少流转时间;另一方面,优化客户体验,客户能实时了解工
- 【Torch】nn.Dropout算法详解
油泼辣子多加
深度学习算法
1.定义nn.Dropout是PyTorch中用于防止神经网络过拟合的正则化层。其核心思想是在训练阶段随机“丢弃”(置零)部分神经元的输出,以减少网络对特定神经元的过度依赖;在推理阶段则保持所有神经元输出不变。2.输入与输出输入(Input)任意形状的浮点张量(如torch.float32、torch.float64等),常见于全连接层或卷积层的激活输出。输出(Output)与输入张量形状、dty
- Redis总结
傲祥Ax
redis数据库Redis重点总结
一、Redis是什么?key-value形式的非关系型数据库,基于内存(64位系统默认是物理内存的四分之三),单线程多路io复用,通常当缓存使用,提高查询效率。二、为什么使用Redis?2.1快(内单异高算)内存存储,单线程模型,异步操作,高效的网络通信,优化的算法和数据结构2.2作用2.2.1五大数据类型Redis存储,key-value形式,value的五种数据类型String,List,Se
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs