简介:
1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!
2.本篇文章对Pointnet++进行激活函数的改进,助力解决RELU激活函数缺陷。
3.专栏持续更新,紧随最新的研究内容。
代码地址
新建activate.py文件,我存放在新建的block目录下,加入以下代码:
# Activation functions
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
@staticmethod
def forward(x):
return x * torch.sigmoid(x)
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
@staticmethod
def forward(x):
# return x * F.hardsigmoid(x) # for torchscript and CoreML
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
class MemoryEfficientSwish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x * torch.sigmoid(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
return grad_output * (sx * (1 + x * (1 - sx)))
def forward(self, x):
return self.F.apply(x)
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
class Mish(nn.Module):
@staticmethod
def forward(x):
return x * F.softplus(x).tanh()
class MemoryEfficientMish(nn.Module):
class F(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + aconcxunlian(x)))
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
def forward(self, x):
return self.F.apply(x)
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
class FReLU(nn.Module):
def __init__(self, c1, k=3): # ch_in, kernel
super().__init__()
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
self.bn = nn.BatchNorm2d(c1)
def forward(self, x):
return torch.max(x, self.bn(self.conv(x)))
class GELU(nn.Module):
def __init__(self):
super(GELU, self).__init__()
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))
#
class MetaAconC(nn.Module):
r""" ACON activation (activate or not).
MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
according to "Activate or Not: Learning Customized Activation" .
"""
def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r
super().__init__()
c2 = max(r, c1 // r)
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
# self.bn1 = nn.BatchNorm2d(c2)
# self.bn2 = nn.BatchNorm2d(c1)
def forward(self, x):
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
# batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
# beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable
beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
###
class AconC(nn.Module):
"""
ACON https://arxiv.org/pdf/2009.04759.pdf
ACON activation (activate or not).
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
according to "Activate or Not: Learning Customized Activation" .
"""
def __init__(self, c1):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
def forward(self, x):
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
在models/pointnet2_utils.py中加入以下代码,该代码将PointNetSetAbstraction中的mlp三层感知机重新封装成一个class Conv模块,便于直接在Conv模块中修改激活函数,修改后的代码和源码结构是一致的。修改不同的激活函数直接在Conv类中修改即可。
PointNetSetAbstraction结构图如下,PointNetSetAbstractionMSG比PointNetSetAbstraction多一个不同尺度的三层mlp,其他结构是一样的。
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1): # ch_in, ch_out, kernel, stride, padding, groups
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k)
self.bn = nn.BatchNorm2d(c2)
#self.act = nn.SiLU()
#self.act = nn.LeakyReLU(0.1)
self.act = nn.ReLU()
#self.act = MetaAconC(c2)
#self.act = AconC(c2)
#self.act = Mish()
#self.act = Hardswish()
#self.act = FReLU(c2)
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def fuseforward(self, x):
return self.act(self.conv(x))
class PointNetSetAbstractionAttention(nn.Module):
def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all):
super(PointNetSetAbstractionAttention, self).__init__()
self.npoint = npoint
self.radius = radius
self.nsample = nsample
#self.mlp_convs = nn.ModuleList()
self.mlp_conv1 = Conv(in_channel,mlp[0],1)
self.mlp_attention = CBAM(mlp[0])
self.mlp_conv2 = Conv(mlp[0],mlp[1],1)
self.mlp_conv3 = Conv(mlp[1],mlp[2],1)
self.group_all = group_all
def forward(self, xyz, points):
"""
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, C, S]
new_points_concat: sample points feature data, [B, D', S]
"""
xyz = xyz.permute(0, 2, 1)
if points is not None:
points = points.permute(0, 2, 1)
if self.group_all:
new_xyz, new_points = sample_and_group_all(xyz, points)
else:
new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points)
# new_xyz: sampled points position data, [B, npoint, C]
# new_points: sampled points data, [B, npoint, nsample, C+D]
new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint]
new_points=self.mlp_conv1(new_points)
new_points = self.mlp_attention(new_points)
new_points = self.mlp_conv2(new_points)
new_points = self.mlp_conv3(new_points)
new_points = torch.max(new_points, 2)[0]
new_xyz = new_xyz.permute(0, 2, 1)
return new_xyz, new_points
class PointNetSetAbstractionMsgAttention(nn.Module):
def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list):
super(PointNetSetAbstractionMsgAttention, self).__init__()
self.npoint = npoint
self.radius_list = radius_list
self.nsample_list = nsample_list
self.mlp_conv00 = Conv(in_channel+3,mlp_list[0][0],1)
self.mlp_conv01 = Conv(mlp_list[0][0],mlp_list[0][1],1)
self.mlp_conv02 = Conv(mlp_list[0][1],mlp_list[0][2],1)
self.mlp_conv10 = Conv(in_channel+3,mlp_list[1][0],1)
self.mlp_conv11 = Conv(mlp_list[1][0],mlp_list[1][1],1)
self.mlp_conv12 = Conv(mlp_list[1][1],mlp_list[1][2],1)
# self.conv_blocks = nn.ModuleList()
# self.bn_blocks = nn.ModuleList()
# for i in range(len(mlp_list)):
# convs = nn.ModuleList()
# bns = nn.ModuleList()
# last_channel = in_channel + 3
# for out_channel in mlp_list[i]:
# convs.append(nn.Conv2d(last_channel, out_channel, 1))
# bns.append(nn.BatchNorm2d(out_channel))
# last_channel = out_channel
# self.conv_blocks.append(convs)
# self.bn_blocks.append(bns)
def forward(self, xyz, points):
"""
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, C, S]
new_points_concat: sample points feature data, [B, D', S]
"""
xyz = xyz.permute(0, 2, 1)
if points is not None:
points = points.permute(0, 2, 1)
B, N, C = xyz.shape
S = self.npoint
new_xyz = index_points(xyz, farthest_point_sample(xyz, S))
new_points_list = []
for i, radius in enumerate(self.radius_list):
K = self.nsample_list[i]
group_idx = query_ball_point(radius, K, xyz, new_xyz)
grouped_xyz = index_points(xyz, group_idx)
grouped_xyz -= new_xyz.view(B, S, 1, C)
if points is not None:
grouped_points = index_points(points, group_idx)
grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
else:
grouped_points = grouped_xyz
grouped_points = grouped_points.permute(0, 3, 2, 1) # [B, D, K, S]
if i==0:
grouped_points =self.mlp_conv00(grouped_points)
grouped_points = self.mlp_conv01(grouped_points)
grouped_points = self.mlp_conv02(grouped_points)
else:
grouped_points = self.mlp_conv10(grouped_points)
grouped_points = self.mlp_conv11(grouped_points)
grouped_points = self.mlp_conv12(grouped_points)
# for j in range(len(self.conv_blocks[i])):
# conv = self.conv_blocks[i][j]
# bn = self.bn_blocks[i][j]
# grouped_points = F.relu(bn(conv(grouped_points)))
new_points = torch.max(grouped_points, 2)[0] # [B, D', S]
new_points_list.append(new_points)
new_xyz = new_xyz.permute(0, 2, 1)
new_points_concat = torch.cat(new_points_list, dim=1)
return new_xyz, new_points_concat
在不同的模型中修改调用即可,如在models/pointnet2_sem_seg.py文件中修改,训练即可
import torch.nn as nn
import torch.nn.functional as F
# from models.pointnet2_utils import PointNetSetAbstraction, PointNetFeaturePropagation, PointNetSetAbstractionKPconv, \
# PointNetSetAbstractionAttention
from models.pointnet2_utils import *
class get_model(nn.Module):
def __init__(self, num_classes):
super(get_model, self).__init__()
self.sa1 = PointNetSetAbstractionAttention(1024, 0.1, 32, 9 + 3, [32, 32, 64], False)
self.sa2 = PointNetSetAbstraction(256, 0.2, 32, 64 + 3, [64, 64, 128], False)
self.sa3 = PointNetSetAbstraction(64, 0.4, 32, 128 + 3, [128, 128, 256], False)
self.sa4 = PointNetSetAbstraction(16, 0.8, 32, 256 + 3, [256, 256, 512], False)
self.fp4 = PointNetFeaturePropagation(768, [256, 256])
self.fp3 = PointNetFeaturePropagation(384, [256, 256])
self.fp2 = PointNetFeaturePropagation(320, [256, 128])
self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128])
self.conv1 = nn.Conv1d(128, 128, 1)
self.bn1 = nn.BatchNorm1d(128)
self.drop1 = nn.Dropout(0.5)
self.conv2 = nn.Conv1d(128, num_classes, 1)
def forward(self, xyz):
l0_points = xyz
l0_xyz = xyz[:,:3,:]
l1_xyz, l1_points = self.sa1(l0_xyz, l0_points)
l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)
l3_xyz, l3_points = self.sa3(l2_xyz, l2_points)
l4_xyz, l4_points = self.sa4(l3_xyz, l3_points)
l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points)
l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points)
l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points)
l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points)
x = self.drop1(F.relu(self.bn1(self.conv1(l0_points))))
x = self.conv2(x)
x = F.log_softmax(x, dim=1)
x = x.permute(0, 2, 1)
return x, l4_points
class get_loss(nn.Module):
def __init__(self):
super(get_loss, self).__init__()
self.gamma=2
def forward(self, pred, target, trans_feat, weight):#pred: 模型预测的输出 target: 真实的标签或数据,用于计算损失
total_loss = F.nll_loss(pred, target, weight=weight)
return total_loss
if __name__ == '__main__':
import torch
model = get_model(13)
xyz = torch.rand(6, 9, 2048)
(model(xyz))