排序

排序数组

class Solution {
    public int[] sortArray(int[] nums) {
    if(nums.length <=1)return nums;
     qSort(nums,0,nums.length-1);
      selectSort(nums);
        insertSort(nums);
        shellSort(nums);
         bucketSort(nums);
        countSort(nums);
         mergeSort(nums,0,nums.length-1);
        heapSort(nums);
    return nums;
    }

    /**
    快速排序  80% & 21%
    **/
    void qSort(int[] arr,int s,int e){
        int l = s, r = e;
        if(l < r){
            int temp = arr[l];
            while(l < r){
                while(l < r && arr[r] >= temp) r--;
                if(l < r) arr[l] = arr[r];
                while(l < r && arr[l] < temp) l++;
                if(l < r) arr[r] = arr[l];
            }
            arr[l] = temp;
            qSort(arr,s,l);
            qSort(arr,l + 1, e);
        }
    }
    /**
    选择排序
    **/
    void selectSort(int[] arr){
        int min;
        for(int i = 0;i= 0; j--){
                if(rt < arr[j]){
                    arr[j + 1] = arr[j];
                    arr[j] = rt;
                }else{
                    break;
                }
            }
        }
    }
    /**
     * 希尔排序 - 插入排序的改进版。为了减少数据的移动次数,在初始序列较大时取较大的步长,
通常取序列长度的一半,此时只有两个元素比较,交换一次;之后步长依次减半直至步长为1,即为插入排序,
由于此时序列已接近有序,故插入元素时数据移动的次数会相对较少,效率得到了提高。
     *
     * 时间复杂度:通常认为是O(N3/2) ,未验证  稳定性:不稳定
     * @param arr
     */
    void shellSort(int arr[]){
        int d = arr.length >> 1;
        while(d >= 1){
            for(int i = d; i < arr.length; i++){
                int rt = arr[i];
                for(int j = i - d; j >= 0; j -= d){
                    if(rt < arr[j]){
                        arr[j + d] = arr[j];
                        arr[j] = rt;
                    }else break;
                }
            }
            d >>= 1;
        }
    }
    /**
     * 桶排序 - 实现线性排序,但当元素间值得大小有较大差距时会带来内存空间的较大浪费。
首先,找出待排序列中得最大元素max,申请内存大小为max + 1的桶(数组)并初始化为0;
然后,遍历排序数列,并依次将每个元素作为下标的桶元素值自增1;
     * 最后,遍历桶元素,并依次将值非0的元素下标值载入排序数列(桶元素>1表明有值大小相等的元素,
此时依次将他们载入排序数列),遍历完成,排序数列便为有序数列。
     *
     * 时间复杂度:O(x*N)   稳定性:稳定
     * @param arr
     */
     void bucketSort(int[] arr){
        int[] bk = new int[50000 * 2 + 1];
        for(int i = 0; i < arr.length; i++){
            bk[arr[i] + 50000] += 1;
        }
        int ar = 0;
        for(int i = 0; i < bk.length; i++){
            for(int j = bk[i]; j > 0; j--){
                arr[ar++] = i - 50000;
            }
        }
    }
        /**
     * 基数排序 - 桶排序的改进版,桶的大小固定为10,减少了内存空间的开销。首先,
找出待排序列中得最大元素max,并依次按max的低位到高位对所有元素排序;
     
* 桶元素10个元素的大小即为待排序数列元素对应数值为相等元素的个数,
即每次遍历待排序数列,桶将其按对应数值位大小分为了10个层级,桶内元素值得和为待排序数列元素个数。
     * @param arr
     */
     void countSort(int[] arr){
        int[] bk = new int[19];
        Integer max = Integer.MIN_VALUE;
        for(int i = 0; i < arr.length; i++){
            if(max < Math.abs(arr[i])) max = arr[i];
        }
        if(max < 0) max = -max;
        max = max.toString().length();
        int [][] bd = new int[19][arr.length];
        for(int k = 0; k < max; k++) {
            for (int i = 0; i < arr.length; i++) {
                int value = (int)(arr[i] / (Math.pow(10,k)) % 10);
                bd[value+9][bk[value+9]++] = arr[i];
            }
            int fl = 0;
            for(int l = 0; l < 19; l++){
                if(bk[l] != 0){
                    for(int s = 0; s < bk[l]; s++){
                        arr[fl++] = bd[l][s];
                    }
                }
            }
            bk = new int[19];
            fl = 0;
        }
    }
    
    /**
     * 归并排序 - 采用了分治和递归的思想,递归&分治-排序整个数列如同排序两个有序数列,
依次执行这个过程直至排序末端的两个元素,
再依次向上层输送排序好的两个子列进行排序直至整个数列有序
(类比二叉树的思想,from down to up)。
     *
     * 时间复杂度:O(NlogN)   稳定性:稳定  46% & 21%
     * @param arr
     */
     void mergeSortInOrder(int[] arr,int bgn,int mid, int end){
        int l = bgn, m = mid +1, e = end;
        int[] arrs = new int[end - bgn + 1];
        int k = 0;
        while(l <= mid && m <= e){
            if(arr[l] < arr[m]){
                arrs[k++] = arr[l++];
            }else{
                arrs[k++] = arr[m++];
            }
        }
        while(l <= mid){
            arrs[k++] = arr[l++];
        }
        while(m <= e){
            arrs[k++] = arr[m++];
        }
        for(int i = 0; i < arrs.length; i++){
            arr[i + bgn] = arrs[i];
        }
    }
     void mergeSort(int[] arr, int bgn, int end)
    {
        if(bgn >= end){
            return;
        }
        int mid = (bgn + end) >> 1;
        mergeSort(arr,bgn,mid);
        mergeSort(arr,mid + 1, end);
        mergeSortInOrder(arr,bgn,mid,end);
    }
    
    /**
     * 堆排序 - 堆排序的思想借助于二叉堆中的最大堆得以实现。首先,将待排序数列抽象为二叉树,
并构造出最大堆;然后,
依次将最大元素(即根节点元素)与待排序数列的最后一个元素交换(即二叉树最深层最右边的叶子结点元素);
     * 每次遍历,刷新最后一个元素的位置(自减1),直至其与首元素相交,即完成排序。
     *
     * 时间复杂度:O(NlogN)   稳定性:不稳定  19.7% & 21%
     *
     * @param arr
     */
     void heapSort(int[] nums) {
        int size = nums.length;
      //初始化构建大根堆
        for (int i = size/2-1; i >=0; i--) {
            adjust(nums, size, i);
        }
      //开始交换
        for (int i = size - 1; i >= 1; i--) {
            int temp = nums[0];
            nums[0] = nums[i];
            nums[i] = temp;
            adjust(nums, i, 0);
        }
    }
    void adjust(int []nums, int len, int index) {
        int l = 2 * index + 1;
        int r = 2 * index + 2;
        int maxIndex = index;
        if (lnums[maxIndex])maxIndex = l;
        if (rnums[maxIndex])maxIndex = r;
        if (maxIndex != index) {
            int temp = nums[maxIndex];
            nums[maxIndex] = nums[index];
            nums[index] = temp;
            adjust(nums, len, maxIndex);
        }
    }
}

你可能感兴趣的:(排序)