- keystone 存储 android,KeyStone存储器架构
贺仙
keystone存储android
序言随着全球范围内的海量数据对无线和有线网络的强大冲击,运营商面临着严峻的挑战,他们需要不断推出既能满足当前需求也能满足未来需求的网络。因此,通信基础局端设备制造商在致力于降低每比特成本和功耗的同时,也在不断寻求能够满足当前及至未来需求的核心技术。TI最新推出的新型KeyStone多内核SoC架构能够游刃有余地满足这些挑战。本文引用地址:http://www.eepw.com.cn/article
- Apache SeaTunnel 荣登 2024 年度中间件开源项目 Top 50 榜单
SeaTunnel
大数据
近日,ApacheSeaTunnel项目成功入选2024年度中间件开源项目Top50榜单。该榜单由OpenGithub技术社区评选,旨在表彰在中间件领域具有突出表现的开源项目。榜单链接:https://zhuanlan.zhihu.com/p/16116358605关于ApacheSeaTunnelApacheSeaTunnel是一个云原生的高性能海量数据集成工具。北京时间2023年6月1日,全球
- 工业场景将成为AI大模型的重要战场!零基础入门AI大模型,看这篇就够了!
大模型扬叔
人工智能工业多模态大模型
前言2024年,各大公司推出强大理解能力的多模态大模型,将引领人工智能(AI)技术创新和应用,工业场景将成为多模态大模型的最佳实践场地。随着GPT-4o、Gemini1.5Pro、LLaVA1.6的发布,基于Transformer架构和海量数据训练的多模态大模型再次点燃通用人工智能(AGI),其对文本、图像等多模态输入的支持和强大的理解能力也象征着人工智能迈向通用人工智能(AGI)的新阶段。随着工
- Python 网络爬虫高级教程:分布式爬取与大规模数据处理
Milk夜雨
pythonpython爬虫网络
经过基础爬虫和进阶爬虫的学习,我们已经掌握了爬虫的基本原理、动态内容处理及反爬机制的应对。然而,当我们面对海量数据或需要高效爬取多个站点时,分布式爬虫和数据存储、处理能力就显得尤为重要。本篇博客将带你迈向网络爬虫的高级阶段,学习分布式爬取、大规模数据处理以及性能优化。一、分布式爬虫的概念1.什么是分布式爬虫?分布式爬虫是指通过多个节点协作完成大规模网页爬取任务的爬虫架构。它能有效解决以下问题:单台
- 【学习总结|DAY026】MySQL基础
123yhy传奇
学习mysql数据库
在Web后端开发中,数据库扮演着至关重要的角色,它是存储和管理数据的核心组件。近期学习了数据库相关知识,在此分享学习过程中的重点内容,涵盖数据库基础概念、MySQL操作以及SQL语句的详细使用等方面。一、数据库基础概念数据库(DataBase-DB):形象地说,它就像是一个大型的数据仓库,专门用于高效地存储和管理海量数据。例如,在金融领域,同花顺的数据中心需要存储海量的股票、基金等金融数据,包括股
- 一文详解大厂数据中台架构
isNotNullX
架构大数据性能优化
在大数据发展的黄金期,几乎所有的高科技企业都在思考一个问题:海量数据作为大多数企业发展不可避免的一个趋势之后,企业该怎么去应用这部分数据资产,会对其商业产生什么影响,如何使数据对企业产生正面的推动而不是成为企业的负担。作为国内的主要大数据玩家,阿里在2015年提出了“大中台、小前台”的战略,奠定了其内部发展数据中台的基础。2018年因为“腾讯数据中台论”,中台再度成为了人们谈论的焦点。至此,关于“
- 学习AI大模型的小白入门建议和具体的学习方法推荐
aFakeProgramer
机器学习人工智能人工智能
深度思考我是一名在汽车行业工作的嵌入式系统工程师,现在我想进入人工智能领域,特别是大型语言模型。说到人工智能,我是一个完全的新手,所以我需要弄清楚从哪里开始。让我们把它分解一下。首先,我知道嵌入式系统涉及许多低级编程、微控制器、实时操作系统等。人工智能,特别是像GPT这样的大型模型,似乎处于另一端,处理高级计算、海量数据集和复杂算法。这里肯定有一个学习曲线。我可能应该从了解机器学习的基础知识开始。
- 数仓建模(五)选择数仓技术栈:Hive & ClickHouse & 其它
昊昊该干饭了
数仓建模大数据hiveclickhousehadoop
在大数据技术的飞速发展下,数据仓库(DataWarehouse,简称数仓)成为企业处理和分析海量数据的核心工具。市场上主流数仓技术栈丰富,如Hive、ClickHouse、Druid、Greenplum等,对于初学者而言,选择合适的技术栈是一项挑战。本文将详细解析Hive、ClickHouse及其他数仓技术,帮助读者根据场景需求选择最佳工具。目录一、数据仓库的基础概念和技术选型原则1.1什么是数据
- 《守护数据隐私的堡垒:构建基于差分隐私的MySQL匿名化处理系统》
墨夶
数据库学习资料2mysqlandroid数据库
在大数据时代,个人隐私保护的重要性日益凸显。随着全球范围内对用户信息保护意识的增强以及相关法律法规(如GDPR、CCPA等)的出台,企业面临着前所未有的挑战——如何在利用海量数据创造价值的同时,确保这些数据不会泄露用户的敏感信息。为了应对这一难题,差分隐私(DifferentialPrivacy,DP)作为一种强大的数学工具应运而生。它不仅能够有效地抵御各种形式的重识别攻击,而且还可以保持数据集统
- Elasticsearch 实战应用
周盛欢
搜索引擎elasticsearchjenkins
一、啥是Elasticsearch嘿,小伙伴们,今天给大家唠唠Elasticsearch。简单来说,它就是一个超厉害的搜索引擎,就像我们平时用的百度、谷歌一样,但它是专门给开发者用的,能帮你在海量数据里快速找到想要的东西。二、为啥要用Elasticsearch想象一下,你有个电商网站,商品信息多得跟天上的星星似的。要是没有Elasticsearch,用户想搜个商品,得等半天才能出结果,那多糟心啊。
- MongoDB深度解析与实践案例
我的运维人生
mongodb数据库运维开发技术共享
MongoDB深度解析与实践案例在当今大数据与云计算盛行的时代,NoSQL数据库以其灵活的数据模型、水平扩展能力和高性能,成为处理海量数据的重要工具之一。MongoDB,作为NoSQL数据库的杰出代表,凭借其面向文档的存储结构、强大的查询语言以及丰富的生态系统,赢得了众多开发者和企业的青睐。本文将深入探讨MongoDB的核心特性、架构设计原则,并通过一个实际案例展示其在实际项目中的应用。一、Mon
- MongoDB深度解析与实践案例
我的运维人生
mongodb数据库运维开发技术共享
MongoDB深度解析与实践案例在当今大数据与云计算蓬勃发展的时代,NoSQL数据库以其灵活的数据模型、水平扩展能力和高性能,成为处理海量数据的重要工具。其中,MongoDB作为NoSQL数据库的佼佼者,凭借其面向文档的存储方式、强大的查询语言以及丰富的生态系统,在各类应用场景中大放异彩。本文将深入探讨MongoDB的核心特性、架构设计原则,并通过实际代码案例展示其在数据处理中的应用。一、Mong
- 广东粤万润与时序数据库TDengine携手打造智慧酒店新未来:数据驱动智能化转型
涛思数据(TDengine)
大数据
在智能化转型浪潮席卷全球的当下,智慧酒店行业已然成为推进智能生活应用的先锋领域。从智能照明到环境监测,从安防系统到沉浸式影音娱乐,智慧酒店通过技术赋能为用户提供了更加舒适、高效且个性化的服务体验。然而,随着设备的增多和场景的复杂化,酒店客控系统也面临着海量数据处理、实时性保障及系统扩展性的多重挑战。在这一背景下,广东粤万润科技股份有限公司作为智慧生活领域的佼佼者,积极探索数据技术的深度应用,以应对
- 【机器学习:三十一、推荐系统:从基础到应用】
KeyPan
机器学习机器学习人工智能决策树算法深度学习
1.推荐系统概述推荐系统是一种根据用户的兴趣和偏好,为用户提供个性化建议的技术,广泛应用于电子商务、流媒体平台和社交媒体等领域。通过分析用户行为数据,推荐系统可以帮助用户发现他们感兴趣的内容,同时提升平台的用户体验和商业收益。定义与作用推荐系统是一种数据过滤技术,旨在从海量数据中筛选出用户可能感兴趣的信息。它不仅能提升用户的满意度,还能增加平台的转化率和黏性。分类推荐系统主要分为以下三类:基于内容
- RocketMQ原理解析
Luxangn
后端rocketmq
RocketMQ是阿里巴巴开源的一款分布式消息队列系统,也是一款高性能、高可用性、高可靠的消息中间件。使用RocketMQ可以轻松地构建分布式、高可用性的消息系统,并可以快速响应业务需求和处理海量数据。下面是RocketMQ的原理解析:架构模型:RocketMQ的架构模型采用分布式、主从复制、高可用性设计,包括Broker、NameServer和Producer、Consumer等模块。其中,Br
- 星火文档问答上线!定制你的专属知识库
AI 研究所
人工智能
放眼全球,大模型正从热烈讨论走向应用落地。麦肯锡最新研究报告,生成式AI有望为全球经济贡献约7万亿美元的价值,并将AI的总体经济效益提高50%左右。一方面,越来越多工作实现自动化与智能化。另一方面,企业与个人依旧要每天处理海量数据,从技术文档、市场分析、产品介绍到公司规章制度。如何利用大模型强大自然语言处理能力,盘活企业知识库资产,配备一个24小时在线的“企业大脑”呢?成为企业大脑大模型依旧存在挑
- 《量子计算对人工智能发展的深远影响》
cc++人工智能深度学习
在科技发展的浪潮中,量子计算与人工智能无疑是两颗璀璨的明星,二者的融合正引领着一场深刻的科技变革.量子计算的独特之处在于其利用量子比特的叠加和纠缠特性,能够实现并行计算,从而在处理复杂问题时展现出超越传统计算的巨大潜力.这种强大的计算能力为人工智能的发展带来了诸多积极影响。加速机器学习训练机器学习,尤其是深度学习,通常需要处理海量数据和复杂的模型训练,耗时极长。量子计算的并行性可使训练过程大幅加速
- AI如何帮助电商企业进行数据分析
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
电商数据分析,人工智能,机器学习,深度学习,推荐系统,预测模型,客户画像1.背景介绍在当今数字化时代,电商行业蓬勃发展,数据成为企业最重要的资产。电商企业每天都会产生海量的数据,包括用户行为、商品信息、交易记录等。如何有效地分析这些数据,挖掘其中的价值,对于电商企业的运营、营销和发展至关重要。传统的数据分析方法往往难以应对海量数据的处理和复杂分析需求,而人工智能(AI)技术的出现为电商数据分析带来
- Hive 窗口函数与分析函数深度解析:开启大数据分析的新维度
自节码
大数据hive数据分析hadoop
Hive窗口函数与分析函数深度解析:开启大数据分析的新维度在当今大数据蓬勃发展的时代,Hive作为一款强大的数据仓库工具,其窗口函数和分析函数犹如一把把精巧的手术刀,助力数据分析师们精准地剖析海量数据,挖掘出深藏其中的价值宝藏。本文将带领大家深入探索HiveQL中这些神奇函数的奥秘,从版本演进、功能特性到丰富多样的实际应用示例,全方位地呈现它们在大数据处理领域的卓越魅力。一、版本回溯与知识宝库指引
- 搜索技术中的关键问题探讨
winner8881
搜索算法
引言在信息爆炸的时代,搜索技术作为连接用户与海量信息的桥梁,其重要性不言而喻。从召回相关信息到对结果进行排序,再到处理一系列衍生问题,搜索技术涵盖了多个关键环节。本文将深入剖析搜索技术中常见的召回、排序以及其他相关重要问题,旨在为该领域的研究与实践提供一个整体的Framework视角~一、常见召回通路及其作用在搜索场景中,召回通路是从海量数据中筛选出与用户查询相关信息的重要途径。不同的召回通路各有
- MongoDB 学习指南与资料分享
来恩1003
MongoDBmongodb数据库
MongoDB学习资料MongoDB学习资料MongoDB学习资料在数据爆炸的当下,MongoDB作为非关系型数据库的佼佼者,以其独特优势在各领域发光发热。无论是海量数据的存储,还是复杂数据结构的处理,MongoDB都能轻松应对。接下来,让我们一同深入探索MongoDB的学习路径,并分享一些实用的学习资料。学习指南入门基础核心概念掌握MongoDB基于分布式文件存储,采用文档型数据模型。它将数据以
- 大数据新视界 --大数据大厂之 Kafka 性能优化的进阶之道:应对海量数据的高效传输
青云交
Kafka核心指南:构建高效消息系统之路大数据新视界Kafka性能优化大数据磁盘I/O分区策略数据压缩人工智能数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- 探索后端的无尽魅力:构建强大而高效的服务器世界
后端
在当今数字化的时代,后端技术犹如一座坚实的桥梁,连接着用户和丰富多彩的互联网世界。后端是默默耕耘的力量,在互联网舞台上,前端吸引眼球,而后端是支撑舞台的坚实支柱。它负责处理数据、管理服务器、确保系统的稳定性和安全性,没有后端,前端的华丽展示将无从谈起。随着技术发展,后端领域迎来诸多热点,如人工智能、大数据、云计算等新兴技术崛起,为后端开发带来无限可能,但也带来新挑战,如在海量数据中实现高效处理和存
- Pyecharts数据可视化大屏:打造沉浸式数据分析体验
我的运维人生
信息可视化数据分析数据挖掘运维开发技术共享
Pyecharts数据可视化大屏:打造沉浸式数据分析体验在当今这个数据驱动的时代,如何将海量数据以直观、生动的方式展现出来,成为了数据分析师和企业决策者关注的焦点。Pyecharts,作为一款基于Python的开源数据可视化库,凭借其丰富的图表类型、灵活的配置选项以及高度的定制化能力,成为了构建数据可视化大屏的理想选择。本文将深入探讨如何利用Pyecharts打造数据可视化大屏,并通过实际代码案例
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 高职人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师实训室边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。在此背景下,边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。针对高等职业院校的人工
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分