机器学习异常值处理 逻辑汇总一

一 清除数据中恒定不变值

如果某个数据长时间不变,默认异常,清除掉该部分数据:

# 使用 `shift` 和 `cumsum` 来创建一个分组键,每次值改变都会增加组号
g = (df['沉淀池3号进水流量'] != df['沉淀池3号进水流量'].shift()).cumsum()

# 使用 `transform` 来计算每个组的大小
counts = df.groupby(g)['沉淀池3号进水流量'].transform('count')
print('counts:', counts)
# 应用一个布尔掩码,将连续出现至少5次的值替换为 NaN
df.loc[counts >= 5, '沉淀池3号进水流量'] = np.nan

# 现在df中的'column_name'列已经将所有连续5个相同的值替换为了 NaN
df.info()

机器学习异常值处理 逻辑汇总一_第1张图片

机器学习异常值处理 逻辑汇总一_第2张图片

二 清除超出范围的值

指定数据范围外的值清洗:

df['原水浊度'] = df['原水浊度'].apply(lambda x: x if 0.01 <= x <= 3 else None)

三 使用其中一列数据替换另一列数据

all_data.loc[all_data['温度'].isnull(), '温度'] = all_data.loc[all_data['温度'].isnull(), '温度2']

四 指定条件替换某一部分数据 np.where

df['沉后水浊度3'] = np.where(df.index > mid_time, 0.1, df['沉后水浊度3'])

你可能感兴趣的:(机器学习,机器学习,人工智能)