能,不是action算子。
RDD调用cache或persist之后,会指定RDD的缓存级别,但只是在成员变量中记录了RDD的存储级别,并未真正地对RDD进行缓存。只有当RDD计算的时候才会对RDD进行缓存。
以HadoopRDD为例
override def compute(split: Partition, context: TaskContext): Iterator[U] = {
val partition = split.asInstanceOf[HadoopPartition]
val inputSplit = partition.inputSplit.value
f(inputSplit, firstParent[T].iterator(split, context))
}
调用的iterator方法
/**
* Internal method to this RDD; will read from cache if applicable, or otherwise compute it.
* This should ''not'' be called by users directly, but is available for implementors of custom
* subclasses of RDD.
*/
final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
if (storageLevel != StorageLevel.NONE) {
getOrCompute(split, context)
} else {
computeOrReadCheckpoint(split, context)
}
}
继续看 getOrCompute方法:这里可以看到blockId的生成规则,可以确定block和partition是一一对应的。
@DeveloperApi
case class RDDBlockId(rddId: Int, splitIndex: Int) extends BlockId {
override def name: String = "rdd_" + rddId + "_" + splitIndex
}
在executor端调用SparkEnv.get.blockManager.getOrElseUpdate()方法,
/**
* Gets or computes an RDD partition. Used by RDD.iterator() when an RDD is cached.
*/
private[spark] def getOrCompute(partition: Partition, context: TaskContext): Iterator[T] = {
val blockId = RDDBlockId(id, partition.index)
var readCachedBlock = true
// This method is called on executors, so we need call SparkEnv.get instead of sc.env.
SparkEnv.get.blockManager.getOrElseUpdate(blockId, storageLevel, elementClassTag, () => {
readCachedBlock = false
computeOrReadCheckpoint(partition, context)
}) match {
case Left(blockResult) =>
if (readCachedBlock) {
val existingMetrics = context.taskMetrics().inputMetrics
existingMetrics.incBytesRead(blockResult.bytes)
new InterruptibleIterator[T](context, blockResult.data.asInstanceOf[Iterator[T]]) {
override def next(): T = {
existingMetrics.incRecordsRead(1)
delegate.next()
}
}
} else {
new InterruptibleIterator(context, blockResult.data.asInstanceOf[Iterator[T]])
}
case Right(iter) =>
new InterruptibleIterator(context, iter.asInstanceOf[Iterator[T]])
}
}
再看BlockManager中的getOrElseUpdate方法,用来缓存数据的
/**
* Retrieve the given block if it exists, otherwise call the provided `makeIterator` method
* to compute the block, persist it, and return its values.
*
* @return either a BlockResult if the block was successfully cached, or an iterator if the block
* could not be cached.
*/
def getOrElseUpdate[T](
blockId: BlockId,
level: StorageLevel,
classTag: ClassTag[T],
makeIterator: () => Iterator[T]): Either[BlockResult, Iterator[T]] = {
// Attempt to read the block from local or remote storage. If it's present, then we don't need
// to go through the local-get-or-put path.
get[T](blockId)(classTag) match {
case Some(block) =>
return Left(block)
case _ =>
// Need to compute the block.
}
// Initially we hold no locks on this block.
doPutIterator(blockId, makeIterator, level, classTag, keepReadLock = true) match {
case None =>
// doPut() didn't hand work back to us, so the block already existed or was successfully
// stored. Therefore, we now hold a read lock on the block.
val blockResult = getLocalValues(blockId).getOrElse {
// Since we held a read lock between the doPut() and get() calls, the block should not
// have been evicted, so get() not returning the block indicates some internal error.
releaseLock(blockId)
throw new SparkException(s"get() failed for block $blockId even though we held a lock")
}
// We already hold a read lock on the block from the doPut() call and getLocalValues()
// acquires the lock again, so we need to call releaseLock() here so that the net number
// of lock acquisitions is 1 (since the caller will only call release() once).
releaseLock(blockId)
Left(blockResult)
case Some(iter) =>
// The put failed, likely because the data was too large to fit in memory and could not be
// dropped to disk. Therefore, we need to pass the input iterator back to the caller so
// that they can decide what to do with the values (e.g. process them without caching).
Right(iter)
}
}