参考:pytorch 卷积填充“same”实现(附代码)
import torch.utils.data
from torch.nn import functional as F
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.functional import pad
from torch.nn.modules import Module
from torch.nn.modules.utils import _single, _pair, _triple
class _ConvNd(Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, transposed, output_padding, groups, bias):
super(_ConvNd, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.output_padding = output_padding
self.groups = groups
if transposed:
self.weight = Parameter(torch.Tensor(
in_channels, out_channels // groups, *kernel_size))
else:
self.weight = Parameter(torch.Tensor(
out_channels, in_channels // groups, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def __repr__(self):
s = ('{name}({in_channels}, {out_channels}, kernel_size={kernel_size}'
', stride={stride}')
if self.padding != (0,) * len(self.padding):
s += ', padding={padding}'
if self.dilation != (1,) * len(self.dilation):
s += ', dilation={dilation}'
if self.output_padding != (0,) * len(self.output_padding):
s += ', output_padding={output_padding}'
if self.groups != 1:
s += ', groups={groups}'
if self.bias is None:
s += ', bias=False'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
class Conv2d(_ConvNd):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(Conv2d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _pair(0), groups, bias)
def forward(self, input):
return conv2d_same_padding(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
# custom con2d, because pytorch don't have "padding='same'" option.
def conv2d_same_padding(input, weight, bias=None, stride=1, padding=1, dilation=1, groups=1):
input_rows = input.size(2)
filter_rows = weight.size(2)
effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1
out_rows = (input_rows + stride[0] - 1) // stride[0]
padding_needed = max(0, (out_rows - 1) * stride[0] + effective_filter_size_rows -
input_rows)
padding_rows = max(0, (out_rows - 1) * stride[0] +
(filter_rows - 1) * dilation[0] + 1 - input_rows)
rows_odd = (padding_rows % 2 != 0)
padding_cols = max(0, (out_rows - 1) * stride[0] +
(filter_rows - 1) * dilation[0] + 1 - input_rows)
cols_odd = (padding_rows % 2 != 0)
if rows_odd or cols_odd:
input = pad(input, [0, int(cols_odd), 0, int(rows_odd)])
return F.conv2d(input, weight, bias, stride,
padding=(padding_rows // 2, padding_cols // 2),
dilation=dilation, groups=groups)
# https://blog.csdn.net/baidu_36161077/article/details/81388141
class Conv1d(_ConvNd):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
kernel_size = _single(kernel_size)
stride = _single(stride)
padding = _single(padding)
dilation = _single(dilation)
super(Conv1d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _single(0), groups, bias)
def forward(self, input):
return conv1d_same_padding(input, self.weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
# custom conv1d, because pytorch don't have "padding='same'" option.
def conv1d_same_padding(input, weight, bias=None, stride=1, padding=1, dilation=1, groups=1):
input_rows = input.size(2)
filter_rows = weight.size(2)
effective_filter_size_rows = (filter_rows - 1) * dilation[0] + 1
out_rows = (input_rows + stride[0] - 1) // stride[0]
padding_needed = max(0, (out_rows - 1) * stride[0] + effective_filter_size_rows -
input_rows)
padding_rows = max(0, (out_rows - 1) * stride[0] +
(filter_rows - 1) * dilation[0] + 1 - input_rows)
rows_odd = (padding_rows % 2 != 0)
# padding_cols = max(0, (out_rows - 1) * stride[0] +
# (filter_rows - 1) * dilation[0] + 1 - input_rows)
# padding_cols = 0
# cols_odd = (padding_rows % 2 != 0)
if rows_odd:
input = pad(input, [0, int(rows_odd)])
return F.conv1d(input, weight, bias, stride,
padding=padding_rows // 2,
dilation=dilation, groups=groups)