- Django学习笔记(第二天:render函数渲染网页模板,使用网页模板输出数据,实现前端页面与数据分离)
S1901
Djangopythondjango学习笔记
Django模板在HelloWorld目录底下创建templates目录并新建runoob.html文件,整个目录结构如下:HelloWorld/|--HelloWorld||--__init__.py||--__init__.pyc||--settings.py||--settings.pyc||--urls.py||--urls.pyc||--views.py||--views.pyc||--
- GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
Ash Butterfield
nlpgptchatgpt
从GPT到ChatGPT,OpenAI用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史!GPT(2018):划时代的起点:GPT(GenerativePre-trainedTransformer)首次将Transformer架构与无监督预训练结合,开启了大规模语言模型的新时代。核心突破:通过海量文本预训练+任务微调,GPT展示了强大的泛化能力。GPT-
- YOLO各版本原理和优缺点解析
Ash Butterfield
计算机视觉
YOLO(YouOnlyLookOnce)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:1.YOLOv1(2016年)原理:将输入图像划分为S×SS\timesSS×S的网格,每个网格预测多个边界框和类别置信度。使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。优点:速度快,适合实时应用。模型结构简单,易于实现和训练。缺点:对小目标检测效果差,容易
- Java NIO基础与实战:如何提升IO操作性能
薛伟同学
Netty:高性能网络编程技巧javanio
JavaNIO概述JavaNIO(新I/O)是Java提供的一个更为高效的I/O处理框架。JavaNIO(NewI/O)是对传统I/O(java.io)模型的改进,它引入了非阻塞I/O操作和面向缓冲区的数据读写方式,解决了传统I/O模型中的性能瓶颈。NIO的设计目标是使I/O操作更加高效,特别是在大数据量、高并发情况下,能够充分利用操作系统的底层I/O多路复用机制。JavaNIO的核心概念包括:B
- 【实测】用全志A733平板搭建一个端侧Deepseek算力平台
小文哥嵌入式开发
嵌入式人工智能AI编程
随着DeepSeek的蒸馏技术的横空出世,端侧SoC芯片上运行大模型成为可能。那么端侧芯片跑大模型的效果如何呢?本文将在全志A733芯片平台上部署一个DeepSeek-R1:1.5B模型,并进行实测效果展示。端侧平台环境设备:全志A733平板系统:Android15DDR:8GBLPDDR5@2400MHzFlash:128GBUFS3.0测试模型:Deepseek-R1-Distill-Qwen
- 【AI论文】OmniHuman-1: 重新思考一阶段条件式人体动画模型的扩展升级
东临碣石82
人工智能
摘要:端到端的人体动画技术,如音频驱动的说话人物生成,近年来取得了显著的进步。然而,现有方法在大规模通用视频生成模型方面的扩展仍然存在困难,限制了它们在实际应用中的潜力。在本文中,我们提出了OmniHuman,一个基于扩散变换器的框架,该框架通过将运动相关条件融入训练阶段来扩展数据规模。为此,我们为这些混合条件引入了两种训练原则,以及相应的模型架构和推理策略。这些设计使OmniHuman能够充分利
- 【AI论文】使用大型推理模型进行竞技编程
东临碣石82
人工智能
摘要:我们的研究表明,将强化学习应用于大型语言模型(LLMs)能显著提升复杂编码和推理任务的性能。此外,我们将两个通用推理模型——OpenAI的o1模型和o3模型的一个早期检查点——与一个特定领域的系统o1-ioi进行了比较。o1-ioi采用了为参加2024年国际信息学奥林匹克竞赛(IOI)而手工设计的推理策略。我们使用o1-ioi实时参加了2024年IOI竞赛,并凭借手工制定的测试时策略取得了第
- 如何微调(Fine-tuning)大语言模型?看完这篇你就懂了!!
datian1234
语言模型人工智能chatgptLLMaiAI大模型大模型微调
前言本文介绍了微调的基本概念,以及如何对语言模型进行微调。从GPT3到ChatGPT、从GPT4到GitHubcopilot的过程,微调在其中扮演了重要角色。什么是微调(fine-tuning)?微调能解决什么问题?什么是LoRA?如何进行微调?本文将解答以上问题,并通过代码实例展示如何使用LoRA进行微调。微调的技术门槛并不高,如果微调的模型规模不大10B及10B以下所需硬件成本也不高(10B模
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- 2024年办公协作新趋势:8种值得瞩目的工作方式
不秃头的UI设计师
远程工作远程办公协作团队协作
过去两年中,疫情的爆发推动了远程办公业务的发展,并且随着疫情的常态化和企业数字化转型的加速,中国企业对协作办公软件的需求显著增加。数据显示,2021年中国协作办公市场规模已达264.2亿元,预计到2023年将增长至330.1亿元。在线团队协作就像在不同应用场景中搭建了一座虚拟桥梁,打破了企业内部的数据孤岛,促进了各部门之间的多维协作。在线协作设计软件则成为企业数字化转型的理想选择,满足了企业在数字
- 【AI系列】从零开始学习大模型GPT (2)- Build a Large Language Model (From Scratch)
Tasfa
AI人工智能教程人工智能学习gpt
前序文章【AI系列】从零开始学习大模型GPT(1)-BuildaLargeLanguageModel(FromScratch)BuildaLargeLanguageModel背景第1章:理解大型语言模型第2章:处理文本数据第3章:编码Attention机制什么是Attention机制?Attention机制的基本原理数学表示应用总结为什么要使用注意力机制如何实现?简单注意力机制带训练权重的注意力机
- 自学人工智能大模型,满足7B模型的训练和微调以及推理,预算3万,如何选购电脑
岁月的眸
人工智能
如果你的预算是3万元人民币,希望训练和微调7B参数规模的人工智能大模型(如LLaMA、Mistral等),你需要一台高性能的深度学习工作站。在这个预算范围内,以下是推荐的配置:1.关键硬件配置(1)GPU(显卡)推荐显卡:NVIDIARTX4090(24GBVRAM)或者RTX3090(24GBVRAM)理由:7B模型推理:24GB显存足够跑7B模型的推理,但全参数训练可能吃力,适合LoRA等微调
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- 【好书推荐2】AI提示工程实战:从零开始利用提示工程学习应用大语言模型
是Yu欸
粉丝福利人工智能深度学习bertAIGCpromptgptAI写作
【好书推荐2】AI提示工程实战:从零开始利用提示工程学习应用大语言模型写在最前面AI辅助研发方向一:AI辅助研发的技术进展方向二:行业应用案例方向三:面临的挑战与机遇方向四:未来趋势预测方向五:与法规的影响方向六:人才培养与教育《AI提示工程实战:从零开始利用提示工程学习应用大语言模型》关键点内容简介作者简介你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖
- 从零开始刷leetcode数组的“度”C语言编程解答
多宝气泡水
从零开始leetcode算法数据结构leetcodec语言哈希算法
描述给定一个非空且只包含非负数的整数数组nums,数组的度的定义是指数组里任一元素出现频数的最大值。你的任务是在nums中找到与nums拥有相同大小的度的最短连续子数组,返回其长度。示例1:输入:nums=[1,2,2,3,1]输出:2解释:输入数组的度是2,因为元素1和2的出现频数最大,均为2。连续子数组里面拥有相同度的有如下所示:[1,2,2,3,1],[1,2,2,3],[2,2,3,1],
- MVC和react
吃蛋糕的居居
javascriptcssnode.jshtml
MVC1.MVC是一种使用MVC(ModelViewController模型-视图-控制器)设计创建Web应用程序的模式.(1)Model(模型)表示应用程序核心(比如数据库记录列表).(2)View(视图)显示数据(数据库记录).(3)Controller(控制器)处理输入(写入数据库记录).2.MVC模式同时提供了对HTML、CSS和JavaScript的完全控制.(1)Model(模式)是应
- RESTful API 和 WebSocket 的区别
戎梓漩
计算机restfulwebsocket后端
文章目录1.RESTfulAPI特点使用场景示例2.WebSocket特点使用场景示例3.RESTfulAPI和WebSocket对比总结4.哪种方式适合大模型服务?RESTfulAPIWebSocket5.什么时候用REST?什么时候用WebSocket?6.结论RESTfulAPI和WebSocket是两种不同的通信方式,主要区别在于数据交互方式、连接管理、性能和适用场景。1.RESTfulA
- 分布式数据库面试整理
Necther
数据库面试分布式
5.3.1redis面试专题1、redis和memcached什么区别?为什么高并发下有时单线程的redis比多线程的memcached效率要高?区别:mc可缓存图片和视频。rd支持除k/v更多的数据结构;rd可以使用虚拟内存,rd可持久化和aof灾难恢复,rd通过主从支持数据备份;3.rd可以做消息队列。原因:mc多线程模型引入了缓存一致性和锁,加锁带来了性能损耗。2、redis主从复制如何实现
- Web3 的虚实融合之路:从虚拟交互到元宇宙构建
dingzd95
web3web3交互
在这个数字技术日新月异的时代,我们正站在Web3的门槛上,见证着互联网的又一次革命。Web3不仅仅是技术的迭代,它代表了一种全新的交互方式和价值创造模式。本文将探讨Web3如何推动虚拟交互的发展,并最终实现元宇宙的构建,揭示这一技术演进背后的关键理念与现实意义。Web3:去中心化的新交互方式Web3,即第三代互联网,是一个去中心化、用户主权、数据自主的网络环境。它依托于区块链、分布式存储等技术,实
- 通义灵码全新上线模型选择功能,新增支持 DeepSeek-V3 和 DeepSeek-R1 模型
TONGYI_Lingma
阿里云云原生AI程序员通义灵码
近期,阿里云百炼平台重磅推出DeepSeek-V3、DeepSeek-R1、DeepSeek-R1-Distill-Qwen-32B等6款模型,进一步丰富其AI模型矩阵。与此同时,通义灵码也紧跟步伐,全新上线模型选择功能,支持基于百炼的DeepSeek-V3和DeepSeek-R1满血版671B模型,为AI编程领域注入新活力。通义灵码能力再升级,支持推理模型选择今年1月,通义灵码AI程序员全面上线
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》 第一章
Allen-Steven
python相关应用SD创作实践stablediffusionprompt人工智能
第一章:认识StableDiffusion与Prompt设计基础1.1什么是StableDiffusion:生成原理与核心优势一、颠覆性生成逻辑:从噪声到艺术的魔法逆向降噪原理传统AI绘画:直接生成完整像素StableDiffusion:通过潜扩散模型(LDM),在低维潜空间(LatentSpace)逐步去除噪声,最终解码为高清图像类比解释:如同雕塑家从混沌的大理石中凿出形体,AI在噪声中「雕刻」
- 解码DeepSeek家族系列:大语言模型赛道上的黑马传奇
大F的智能小课
语言模型人工智能自然语言处理
1.DeepSeek公司概况1.1成立背景与发展历程DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,于2023年7月17日正式成立。公司由知名量化资管巨头幻方量化孕育而生,其创始人梁文峰是幻方量化的联合创始人之一。DeepSeek自成立之初,便专注于开发先进的大语言模型(LLM)及相关技术,致力于通过数据蒸馏技术提取更精炼、有用的数据,以提升模型性能。在发展历程中,DeepSeek
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- Sora如何颠覆20个商业场景?Sora模型的商业应用及成本效益分析
大F的智能小课
玩转大模型人工智能
Sora模型简介Sora模型,作为一种先进的长视频生成模型,具有广泛的应用潜力。以下是Sora模型可能的20个商业场景应用,包括每个场景在Sora模型未发布时的普遍做法、Sora模型发布之后的改变以及节省成本的维度分析。节省成本的说明节省成本的说明:节省成本的计算是基于几个关键因素,包括时间、人力、设备和材料成本。以下是具体计算方法的一个概述:时间成本:使用Sora模型可以显著减少视频制作的时间。
- 《哪吒》的成功之道:影视创作项目管理的“核心技巧”
《哪吒》票房神话背后:揭秘影视创作项目管理的“乾坤圈”——从“手工作坊”到工业化体系,一部爆款的诞生逻辑[]()一、50亿票房背后的“不可能任务”2025年春节档,《哪吒之魔童闹海》以95.1亿元票房刷新影史纪录,成为首个登顶全球动画票房榜的国产电影1。然而,鲜为人知的是,这部现象级作品背后,是一场“逆天改命”的极限挑战——4000人团队:制作规模是第一部的2-3倍,涉及160余家外包公司9;19
- DeepSeek R1:开启AI推理新时代,强在哪里?
人工智能
DeepSeekR1:开启AI推理新时代阅读时长:19分钟发布时间:2025-02-13近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】你是否曾好奇,AI模型是如何学会拆解数学问题,或是一步步解释代码的呢?在过去几年,许多公司开发出了大型语言模型(LLM),它们能创作文章、翻译语言、编写
- DeepSeek使用手册,其中一份是清华大学出品
cpa007
云计算
自娶,。https://pan.quark.cn/s/d174471b17c0深入了解DeepSeek:从技术到应用一、DeepSeek是什么?DeepSeek(深度求索)是一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能平台,专注于提供高效易用的AI模型训练与推理能力。它既包含预训练大语言模型(如DeepSeek-R1系列),也提供配套工具链,助力开发者快速实现AI应用落地。二、De
- 获取 OpenAI o1-preview/o1-Mini API key 进行 API 调用的详细教程
openaiapikey
如何使用OpenAI推理模型:o1-preview/o1-Mini模型的API调用在快速发展的人工智能领域,OpenAI推出了o1系列模型(草莓),包括o1-preview和o1-Mini。这些模型旨在执行复杂的推理任务,成为开发人员和研究人员的强大工具。本文将介绍如何使用这些模型进行API调用。1.openaiapikey获取首先,您需要一个OpenAIAPI密钥。您可以在OpenAI的官方网站
- 使用openai api key不支持识别base64的图片?开发者上传多图的示例代码
openaiclaude
openai不支持base64_encoded_image,但是claude3.5支持。我试了uiuiapi.com的api但是你们全用openai的格式似乎不能识别base64的图片。还是说兼容的接口就是所有message的形式全部使用openai的官方文档,我只需要改一个model=xxx,然后其他规则得遵守openai而不是我使用的模型的官方文档?你好,确实需要注意不同模型可能在接口和数据格
- 获取 OpenAI API Key GPT-4o Mini 模型并开发调用部署ChatGPT聊天
chatgptopenai
获取OpenAIAPIKey并开发调用GPT-4oMini模型OpenAI提供的API可以让开发者轻松调用其强大的自然语言处理模型。以下是获取OpenAIAPIKey并调用GPT-4oMini模型的详细步骤。一、注册OpenAI账户访问官网:打开[OpenAI官方网站]。创建账户:点击页面右上角的“SignUp”按钮,输入你的电子邮件地址和密码。验证邮箱:根据收到的邮件提示,完成邮箱验证。填写信息
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理