解决:RuntimeError: mat1 and mat2 shapes cannot be multiplied(单张图片输入情况,可参考)

在练习使用pytorch加载模型,识别图片时,出现了这一问题。
解决:RuntimeError: mat1 and mat2 shapes cannot be multiplied(单张图片输入情况,可参考)_第1张图片
解决方法:使用torch.reshape()将输入数据格式改成与网络相符的格式。

详细过程:

报错代码:

import torch
import torchvision
from PIL import Image

from model import *

image = Image.open("./img/dog.png")
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)

model = MyNet()
model.load_state_dict(torch.load("./testmodel/mynet_7.pth"))
output = model(image)
print(output)

其中我的model.py文件中的代码:

#!/usr/bin/env python
# _*_ coding: utf-8 _*_
# @Time : 2023-09-22 15:57
# @Author : Kanbara
# @File : model.py

import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Linear, Flatten


class MyNet(nn.Module):
    def __init__(self):
        super(MyNet, self).__init__()
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(64*4*4, 64),
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


#测试该文件是否编译有问题
if __name__ == '__main__':
    mynet = MyNet()
    input = torch.ones([64, 3, 32, 32])
    output = mynet(input)
    print(output.shape)

model中的网络经过测试,本身不存在问题。
实际上,是输入图像尺寸少了一个参数batch_size导致。

print(image.shape)
>>torch.Size([3, 32, 32])

而根据网络设置,输入应有四个维度,第一个维度为batch_size。通过torch.reshape功能,添加代码:

image = torch.reshape(image, (1, 3, 32, 32))

即可解决。此时代码能够正常运行,修改后代码:

import torch
import torchvision
from PIL import Image

from model import *

image = Image.open("./img/dog.png")
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)

model = MyNet()
model.load_state_dict(torch.load("./testmodel/mynet_7.pth"))
image = torch.reshape(image, (1, 3, 32, 32))
output = model(image)
print(output)

你可能感兴趣的:(pytorch,python,pytorch,学习)