- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- AI 图像生成器,如何使用 Janus-Pro 和 Janus, Deepseek 的 Janus-Pro、Janus 和其他领先工具的比较
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekjanuspro
介绍人工智能(AI)彻底改变了数字艺术和设计领域,使创建高质量图像变得前所未有的简单,而且只需付出最少的努力。人工智能驱动的图像生成器使用深度学习算法将文本描述转换为逼真或艺术化的视觉效果,可满足营销、广告、游戏和内容创作等各种行业的需求。在本综合指南中,我们将探索一些最流行的AI图像生成器,包括DeepSeek的Janus-Pro和Janus,以及DALL·E3、Midjourney、Stabl
- 深度学习篇---深度学习框架图像预处理&各部分组件
Ronin-Lotus
深度学习篇程序代码篇深度学习人工智能Python机器学习pytorchpaddlepaddle深度学习框架
文章目录前言第一部分:图像预处理PaddlePaddle图像预处理PyTorch图像预处理第二部分:框架各部分组件PaddlePaddle1.卷积层(ConvolutionalLayer)2.池化层(PoolingLayer)3.全连接层(FullyConnectedLayer)4.激活函数(ActivationFunction)5.优化器(Optimizer)6.归一化(Normalizatio
- 机器学习,深度学习,神经网络,深度神经网络
武昌库里写JAVA
面试题汇总与解析java学习开发语言课程设计springboot
人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。神经网络与深度神经网络的区别在于隐藏层级,通常两层或两层以上隐藏层的网络叫做深度神经网络。一般隐藏层越多,精确度越高。深度学习的算法又分很多种,比较典型的四种:卷积神经网络—CNN,循环神经网络—RNN,生成对抗网络—GANs,深度强化学习—RL。机器学习和深度学习的
- 基于深度学习的车牌检测识别系统 —— 使用YOLOv5实现车牌检测与识别
2025年数学建模美赛
深度学习YOLO人工智能分类ui
目录引言项目背景与目标1.1项目背景1.2项目目标系统设计与架构2.1系统功能概述2.2系统架构数据准备与处理3.1数据集选择与收集3.2数据标注3.3数据集划分YOLOv5模型训练与优化4.1YOLOv5配置文件4.2安装YOLOv5并开始训练4.3模型评估与优化车牌识别与推理5.1加载模型进行推理5.2UI界面设计总结与展望引言车牌识别(LicensePlateRecognition,LPR)
- 关于大模型 AGI 应知应会_生在AI发展的时代
森焱森
机器人人工智能算法总结科技
在AI时代,大模型和通用人工智能(AGI)正在深刻改变我们的生活和工作方式。以下是一些关于大模型和AGI的关键知识点,帮助我们更好地理解这一技术浪潮。一、大模型的核心概念与特点(一)什么是大模型大模型(LargeLanguageModels,LLMs)是指具有大规模参数和复杂计算结构的深度学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这些模型通过训练海量数据来学习复杂的模式和特
- AI 浪潮席卷中国年,开启科技新春新纪元
芯作者
DD:日记人工智能机器学习
在21世纪的第三个十年,人工智能(AI)技术以前所未有的速度席卷全球,而在东方古国——中国,这股浪潮尤为汹涌澎湃。随着大数据、云计算、深度学习等技术的不断成熟,AI不仅重塑了传统行业的面貌,更在新春佳节这一最具中国特色的时刻,以其独特的方式,开启了科技新春的新纪元。本文将从AI在春节期间的应用、对中国经济的影响、社会文化的变迁、面临的挑战以及未来展望等五个方面,层次分明地探讨这一话题。一、AI在春
- 大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)
North_D
大语言模型LLM分布式tensorflow人工智能自然语言处理深度学习python神经网络
文章目录大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)1.引言2.TensorFlow分布式训练基础概念3.TensorFlow中LLM分布式训练的关键技术及应用4.利用TensorFlow进行LLM分布式训练的具体实践5.高级主题与最新进展探究大语言模型LLM分布式训练:TensorFlow攻略与深度解析(LLM系列04)1.引言随着自然语言处理(NLP)的迅速
- AI人工智能代理工作流 AI Agent WorkFlow:在音乐创作中的应用
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在音乐创作中的应用1.背景介绍1.1问题的由来在音乐创作领域,艺术家们一直在寻找创新的方式来提升作品的独特性、丰富性以及创作效率。随着人工智能技术的快速发展,特别是深度学习和生成模型的广泛应用,音乐创作过程正逐渐被赋予新的生命力。AI代理工作流的概念应运而生,旨在通过自动化的流程和智能辅助手段,帮助音乐人探索新的音乐风格、创作灵感,甚至生成完整
- 在量子计算与AI结合的未来,是否能够实现更高效、更复杂的模式识别和数据处理?
concisedistinct
编程开发技术栈人工智能
随着量子计算和人工智能(AI)的发展,二者的结合正在成为前沿科技领域的一个重要研究方向。量子计算通过利用量子叠加和纠缠等特性,能够在某些问题上提供比经典计算机更强大的计算能力。人工智能,特别是深度学习,已经在许多领域取得了突破性的进展。本文将探讨量子计算与AI结合的创新机会,重点分析其在模式识别和数据处理中的优势与挑战。通过量子计算的并行处理能力和AI模型的智能学习能力,未来有望实现比传统计算更高
- python必读书单
Vin0sen
python开发语言
文章目录{编程入门}{编程进阶}{算法基础}{Web开发}{网络编程}{爬虫}{安全}{数据分析}{数据科学}{数据挖掘}{机器学习}{深度学习}{其他方向}{编程入门}父与子的编程之旅:与小卡特一起学Python[HOT]Python2.7和孩子一起玩编程Python2.7零压力学PythonPython3.0,但也指出了如何修改示例,以支持Python2.0Python编程:从入门到实践[HO
- 心法利器[127] | 24年算法思考-特征工程和经典深度学习
机智的叉烧
算法深度学习人工智能
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[122]|效果提升的根本来源讨论心法利器[123]|算法面试的八股和非八股讨论心法利器[124]|24年算法思考-大模型的应用与训练篇心法利器[125
- Pytorch深度学习实战2-1:详细推导Xavier参数初始化(附Python实现)
2401_84140080
程序员深度学习pythonpytorch
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- TensorFlow 示例项目实战与源码解析.zip
ELSON麦香包
本文还有配套的精品资源,点击获取简介:TensorFlow是谷歌大脑团队开发的开源机器学习库,广泛应用于深度学习、人工智能等领域。该压缩包提供了一个TensorFlow示例项目的源代码,涵盖了从基础操作到复杂模型的各种主题。文章将详细介绍TensorFlow的核心概念,如张量、图计算、会话、变量、梯度下降与优化器、损失函数、数据集、模型评估、模型保存与恢复以及KerasAPI。读者可通过实践这些示
- 大模型带你学pytorch课程
立杰说
Pythondeep-learningPytorchpytorch人工智能python
时间有限,大家有想看的部分,可以私信或者评论区联系,我及时补充。或者大家有想帮忙补充的也可以联系。注:大部分内容均为大模型生成,若有疏漏,欢迎指出。看起来你想要开始学习PyTorch,这是一个非常棒的选择!PyTorch是一个强大的开源机器学习框架,由Facebook的人工智能研究实验室开发,被广泛用于深度学习模型的构建和训练。让我们开始你的PyTorch旅程吧!1.预备课程大纲1.1引入Pyth
- 【2024年国内一些知名的免费AI对话工具的对比】
龙少9543
后端人工智能
2024年国内一些知名的免费AI对话工具的对比免费体验以下是2024年国内一些知名的免费AI对话工具的对比以及它们的体验地址。这些工具基于各自公司的深度学习和自然语言处理技术,为用户提供智能对话服务。百度文心一言特点:基于ERNIE模型,拥有知识增强、检索增强和对话增强的技术特色,支持跨模态生成。体验地址:https://yiyan.baidu.com/讯飞星火认知大模型特点:支持多风格长文本生成
- 用于深度学习的硬件配置列表
Mr.Q
项目记录环境搭建工具深度学习
自己2021年配制的一台深度学习机子,体验是水冷没必要(主要是安装费劲)。注意电源功率一定要够,不然带不动显卡,最好是1000w左右。1处理器:英特尔(Intel)i9-10900K10核20线程盒装CPU处理器【英特尔i9-10900K】英特尔(Intel)10代酷睿i9-10900KCPU处理器10核20线程睿频至高可达5Ghz【行情报价价格评测】-京东35992主板:玩家国度(ROG)ROG
- 计算范式的变革:从图灵机到神经网络
AI架构设计之禅
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
图灵机,神经网络,计算范式,深度学习,机器学习,人工智能,算法,模型1.背景介绍自20世纪中叶以来,计算机科学经历了飞速发展,计算范式也经历了深刻的变革。从最初的图灵机模型到如今的深度学习,我们不断探索更强大、更灵活的计算方式。图灵机作为计算机科学的基石,奠定了通用计算的理论基础。它以有限的符号和规则,模拟了人类的逻辑思维过程,为现代计算机的诞生提供了理论支撑。然而,图灵机的计算能力受限于其固定的
- 【Python】已解决:Python读取字典查询键报错“KeyError: ‘d‘”
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- NLP模型笔记2022-24:neo4j+py2neo 构建《中国优质电影及其演员》知识图谱
源代码杀手
自然语言处理笔记与知识图谱专栏知识图谱自然语言处理人工智能
往前文章链接NLP模型笔记2022-25:neo4j+py2neo构建增值税电子普通发票知识图谱NLP模型笔记2022-24:neo4j+py2neo构建《中国优质电影及其演员》知识图谱NLP模型笔记2022-23:知识图谱neo4j可视化实体多关系属性【破案线索关系】NLP模型笔记2022-22:知识图谱neo4j批量可视化NLP模型笔记2022-21:知识图谱neo4j指定方向实体(头实体、尾
- DeepSeek R1重塑行业标准:BIM智能审查效率提升300%的实战解密
Coderabo
DeepSeekR1模型企业级应用人工智能
DeepSeekR1驱动的BIM模型智能审查技术深度解析与实践指南第一章BIM智能审查技术概述建筑信息模型(BIM)的智能化审查是建筑行业数字化转型的核心环节。传统人工审查方式存在效率低、标准不统一、易遗漏等问题,DeepSeekR1框架支持的智能审查系统通过以下技术突破实现革新:多源异构数据融合:支持IFC/RVT/DWG等格式的自动转换语义特征解析引擎:基于深度学习的构件特征识别准确率达98.
- DeepSeek R1赋能智能建造:施工安全风险预判系统全栈开发实战与创新解析
Coderabo
DeepSeekR1模型企业级应用安全
基于DeepSeekR1的智能施工安全风险预判系统构建与实战一、施工安全风险预判技术概述在建筑工程领域,安全风险预判是保障施工人员和财产安全的关键环节。传统的人工巡检方式存在效率低、覆盖面窄、响应滞后等问题。DeepSeekR1智能分析系统通过融合计算机视觉、物联网传感技术和深度学习算法,构建了多维度的风险预警体系。本系统具备以下核心功能:实时视频监控分析(安全装备检测、危险区域入侵识别)设备状态
- 基于深度学习的政策效果仿真推演:实现智能化决策支持
Coderabo
DeepSeekR1模型企业级应用深度学习人工智能
政策效果仿真推演:基于DeepSeekR1的人工智能驱动决策支持系统引言政策效果仿真推演是现代社会治理中不可或缺的重要环节。通过模拟不同政策在实际执行过程中可能产生的各种影响,政府和相关机构可以更科学地制定和调整政策,从而提高治理效率和效果。然而,传统的政策仿真方法往往依赖于大量的历史数据、复杂的数学模型以及人工经验判断,存在耗时长、成本高、结果不够精准等问题。近年来,随着人工智能技术的快速发展,
- 深度学习|表示学习|卷积神经网络|输出维度公式|15
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:在卷积和池化操作中,计算输出维度的公式是关键,它们分别可以帮助我们计算卷积操作和池化操作后的输出大小。下面分别总结公式,并结合解释它们的意义:1.卷积操作的输出维度公式当我们对输入图像进行卷积时,输出的宽度和高度可以通过以下公式计算:输出大小=输入大小−卷积核大小+2⋅填充大小步长+1\text{输出大小}=\frac{\text{输入大小}-\text{卷积核大小}+2\cdot\te
- 深度学习|表示学习|卷积神经网络|输出维度公式如何理解?|16
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:当我们对输入图像进行卷积时,输出的宽度和高度可以通过以下公式计算:输出大小=输入大小−卷积核大小+2⋅填充大小步长+1\text{输出大小}=\frac{\text{输入大小}-\text{卷积核大小}+2\cdot\text{填充大小}}{\text{步长}}+1输出大小=步长输入大小−卷积核大小+2⋅填充大小+1池化(Pooling)的输出大小公式类似卷积,但更加简单:输出大小=输入
- 深度学习-98-大语言模型LLM之基于langchain的代理create_react_agent工具
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Agent代理1.1代理的分类1.2ReAct和Structuredchat2代理应用ReAct2.1创建工具2.1.1嵌入模型2.1.2创建检索器2.1.3测试检索结果2.1.4创建工具列表2.2初始化大模型2.3创建Agent2.4运行Agent3参考附录1Agent代理Agent代理的核心思想是使用语言模型来选择要采取的一系列动作。(1)在链中,动作序列是硬编码的。(2)在代理中,
- 【LangChain编程:从入门到实践】开发环境准备
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】开发环境准备作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,自然语言处理(NLP)在各个领域得到了广泛应用。LangChain作为一种新型的编程范式,将编程与自然语言处理相结合,为开发者提供了一种全新的编程体验。然而,想要开始LangChain编程之旅,首
- 基于 FPGA 的 CNN 卷积神经网络整体实现
鱼弦
人工智能时代fpga开发cnn人工智能
基于FPGA的CNN卷积神经网络整体实现介绍卷积神经网络(CNN)是一种强大的深度学习架构,广泛用于图像识别、物体检测和自然语言处理等领域。FPGA以其并行处理能力、低延迟和灵活性,是加速CNN推理的理想硬件平台。通过在FPGA上实现CNN,可以显著提高实时应用中的推理效率。应用使用场景实时图像识别:如智能手机摄像头中的面部识别。自动驾驶:环境感知和障碍物检测。医疗影像分析:快速处理MRI或X-R
- 【大模型应用开发 动手做AI Agent】第二轮思考:模型决定计算
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】第二轮思考:模型决定计算关键词:大模型,AIAgent,模型决定计算,模型优化,计算优化,硬件加速,效率提升1.背景介绍随着深度学习技术的飞速发展,大模型在自然语言处理、计算机视觉等领域取得了突破性进展。这些模型通过学习海量数据,能够完成复杂的任务,如机器翻译、图像识别、问答系统等。然而,大模型在应用开发中面临着计算资源、能耗和效率等方面的挑战。本文将从“模型
- AI Agent: AI的下一个风口 具身机器人的发展趋势
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AIAgent:AI的下一个风口——具身机器人的发展趋势1.背景介绍1.1问题的由来随着人工智能技术的快速发展,特别是深度学习的突破性进展,我们正目睹着从“智慧大脑”向“具身智能”的转变。具身智能,即赋予机器以身体形式的能力,使之能够在物理环境中行动和互动,是人工智能领域的一个新兴且极具潜力的方向。具身机器人的发展标志着从对静态数据的处理转向对动态环境的适应与交互,这不仅是技术上的飞跃,也是人类对
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不