代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数

目录

104.二叉树的最大深度

解题思路

递归法

迭代法

实现代码

559.n叉树的最大深度

解题思路

实现代码

111.二叉树的最小深度

解题思路

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

实现代码

222.完全二叉树的节点个数

解题思路

普通二叉树

递归

完全二叉树

实现代码


104.二叉树的最大深度

题目链接:104.二叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例: 给定二叉树 [3,9,20,null,null,15,7],

代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数_第1张图片

返回它的最大深度 3 。

解题思路

在十道题那篇文章中遇到过这道题。

递归法

本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度。

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)

而根节点的高度就是二叉树的最大深度,所以本题中我们通过后序求的根节点高度来求的二叉树最大深度。

我先用后序遍历(左右中)来计算树的高度。

  1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回这棵树的深度,所以返回值为int类型。

代码如下:

int getdepth(TreeNode* node)
  1. 确定终止条件:如果为空节点的话,就返回0,表示高度为0。

代码如下:

if (node == NULL) return 0;
  1. 确定单层递归的逻辑:先求它的左子树的深度,再求右子树的深度,最后取左右深度最大的数值 再+1 (加1是因为算上当前中间节点)就是目前节点为根节点的树的深度。

代码如下:

int leftdepth = getdepth(node->left);       // 左
int rightdepth = getdepth(node->right);     // 右
int depth = 1 + max(leftdepth, rightdepth); // 中
return depth;

迭代法

使用迭代法的话,使用层序遍历是最为合适的,因为最大的深度就是二叉树的层数,和层序遍历的方式极其吻合。

在二叉树中,一层一层的来遍历二叉树,记录一下遍历的层数就是二叉树的深度,如图所示:

代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数_第2张图片

所以这道题的迭代法就是一道模板题,可以使用二叉树层序遍历的模板来解决的。

实现代码

class solution {
    /**
     * 递归法
     */
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = maxDepth(root.left);
        int rightDepth = maxDepth(root.right);
        return Math.max(leftDepth, rightDepth) + 1;
    }
}

class Solution {
  /**
   * 递归法(求深度法)
   */
    //定义最大深度
    int maxnum = 0;

    public int maxDepth(TreeNode root) {
        ans(root,0);
        return maxnum;
    }
    
    //递归求解最大深度
    void ans(TreeNode tr,int tmp){
        if(tr==null) return;
        tmp++;
        maxnum = maxnum deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode node = deque.poll();
                if (node.left != null) {
                    deque.offer(node.left);
                }
                if (node.right != null) {
                    deque.offer(node.right);
                }
            }
        }
        return depth;
    }
}

 

559.n叉树的最大深度

题目链接:559. N 叉树的最大深度

给定一个 N 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。

示例 1:

代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数_第3张图片

输入:root = [1,null,3,2,4,null,5,6]
输出:3

示例 2:

代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数_第4张图片

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:5

解题思路

依然可以提供递归法和迭代法,来解决这个问题,思路是和二叉树思路一样的。

实现代码

class Solution {
    /*递归法,后序遍历求root节点的高度*/
    public int maxDepth(Node root) {
        if (root == null) return 0;

        int depth = 0;
        if (root.children != null){
            for (Node child : root.children){
                depth = Math.max(depth, maxDepth(child));
            }
        }

        return depth + 1; //中节点
    }  
}

class solution {
    /**
     * 迭代法,使用层序遍历
     */
    public int maxDepth(Node root) {
        if (root == null)   return 0;
        int depth = 0;
        Queue que = new LinkedList<>();
        que.offer(root);
        while (!que.isEmpty())
        {
            depth ++;
            int len = que.size();
            while (len > 0)
            {
                Node node = que.poll();
                for (int i = 0; i < node.children.size(); i++)
                    if (node.children.get(i) != null) 
                        que.offer(node.children.get(i));
                len--;
            }
        }
        return depth;
    }
}

 

111.二叉树的最小深度

题目链接:111.二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数_第5张图片

返回它的最小深度 2

解题思路

本题依然是前序遍历和后序遍历都可以,前序求的是深度,后序求的是高度。

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

那么使用后序遍历,其实求的是根节点到叶子节点的最小距离,就是求高度的过程,不过这个最小距离 也同样是最小深度。

代码随想录算法训练营第16天 | 104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数_第6张图片

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

实现代码

class Solution {
    /**
     * 递归法,相比求MaxDepth要复杂点
     * 因为最小深度是从根节点到最近**叶子节点**的最短路径上的节点数量
     */
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int leftDepth = minDepth(root.left);
        int rightDepth = minDepth(root.right);
        if (root.left == null) {
            return rightDepth + 1;
        }
        if (root.right == null) {
            return leftDepth + 1;
        }
        // 左右结点都不为null
        return Math.min(leftDepth, rightDepth) + 1;
    }
}

class Solution {
    /**
     * 递归法(思路来自二叉树最大深度的递归法)
     * 该题求最小深度,最小深度为根节点到叶子节点的深度,所以在迭代到每个叶子节点时更新最小值。
     */
    int depth = 0;
    // 定义最小深度,初始化最大值
    int minDepth = Integer.MAX_VALUE;
    public int minDepth(TreeNode root) {
        dep(root);
        return minDepth == Integer.MAX_VALUE ? 0 : minDepth;
    }
    void dep(TreeNode root){
        if(root == null) return ;
        // 递归开始,深度增加
        depth++;
        dep(root.left);
        dep(root.right);
        // 该位置表示递归到叶子节点了,需要更新最小深度minDepth
        if(root.left == null && root.right == null)
            minDepth = Math.min(minDepth , depth);
        // 递归结束,深度减小
        depth--;
    }
}

class Solution {
   /**
     * 迭代法,层序遍历
     */
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Deque deque = new LinkedList<>();
        deque.offer(root);
        int depth = 0;
        while (!deque.isEmpty()) {
            int size = deque.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode poll = deque.poll();
                if (poll.left == null && poll.right == null) {
                    // 是叶子结点,直接返回depth,因为从上往下遍历,所以该值就是最小值
                    return depth;
                }
                if (poll.left != null) {
                    deque.offer(poll.left);
                }
                if (poll.right != null) {
                    deque.offer(poll.right);
                }
            }
        }
        return depth;
    }
}

 

222.完全二叉树的节点个数

题目链接:222.完全二叉树的节点个数

给出一个完全二叉树,求出该树的节点个数。

示例 1:

  • 输入:root = [1,2,3,4,5,6]
  • 输出:6

示例 2:

  • 输入:root = []
  • 输出:0

示例 3:

  • 输入:root = [1]
  • 输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 10^4]
  • 0 <= Node.val <= 5 * 10^4
  • 题目数据保证输入的树是 完全二叉树

解题思路

普通二叉树

首先按照普通二叉树的逻辑来求。

递归遍历的顺序依然是后序(左右中)。

递归
  1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。

代码如下:

int getNodesNum(TreeNode* cur) {
  1. 确定终止条件:如果为空节点的话,就返回0,表示节点数为0。

代码如下:

if (cur == NULL) return 0;
  1. 确定单层递归的逻辑:先求它的左子树的节点数量,再求右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。

代码如下:

int leftNum = getNodesNum(cur->left);      // 左
int rightNum = getNodesNum(cur->right);    // 右
int treeNum = leftNum + rightNum + 1;      // 中
return treeNum;

完全二叉树

判断其子树是不是满二叉树,如果是则利用公式计算这个子树(满二叉树)的节点数量,如果不是则继续递归,那么 在递归三部曲中,第二部:终止条件的写法应该是这样的:

if (root == nullptr) return 0; 
// 开始根据左深度和右深度是否相同来判断该子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) {  // 求左子树深度
    left = left->left;
    leftDepth++;
}
while (right) { // 求右子树深度
    right = right->right;
    rightDepth++;
}
if (leftDepth == rightDepth) {
    return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,返回满足满二叉树的子树节点数量
}

递归三部曲,第三部,单层递归的逻辑:(可以看出使用后序遍历)

int leftTreeNum = countNodes(root->left);       // 左
int rightTreeNum = countNodes(root->right);     // 右
int result = leftTreeNum + rightTreeNum + 1;    // 中
return result;

该部分精简之后代码为:

return countNodes(root->left) + countNodes(root->right) + 1; 

实现代码

class Solution {
    // 通用递归解法
    public int countNodes(TreeNode root) {
        if(root == null) {
            return 0;
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}

class Solution {
    // 迭代法
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        Queue queue = new LinkedList<>();
        queue.offer(root);
        int result = 0;
        while (!queue.isEmpty()) {
            int size = queue.size();
            while (size -- > 0) {
                TreeNode cur = queue.poll();
                result++;
                if (cur.left != null) queue.offer(cur.left);
                if (cur.right != null) queue.offer(cur.right);
            }
        }
        return result;
    }
}

class Solution {
    /**
     * 针对完全二叉树的解法
     *
     * 满二叉树的结点数为:2^depth - 1
     */
    public int countNodes(TreeNode root) {
        if (root == null) return 0;
        TreeNode left = root.left;
        TreeNode right = root.right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left != null) {  // 求左子树深度
            left = left.left;
            leftDepth++;
        }
        while (right != null) { // 求右子树深度
            right = right.right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}

你可能感兴趣的:(算法,数据结构)