二叉树的直径,力扣

目录

题目地址:

题目:

我们直接看题解吧:

审题目+事例+提示:

解题方法:

难度分析:

解题方法分析:

解题分析:

补充说明:

代码优化:


题目地址:

543. 二叉树的直径 - 力扣(LeetCode)

难度:简单

今天刷二叉树的直径,大家有兴趣可以点上面链接,看看题目要求,试着做一下。

题目:

给你一棵二叉树的根节点,返回该树的 直径 。

二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。

两节点之间路径的 长度 由它们之间边数表示。

二叉树的直径,力扣_第1张图片

我们直接看题解吧:

审题目+事例+提示:

二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。

两节点之间路径的 长度 由它们之间边数表示。

解题方法:

方法为  深度搜索(DFS)

难度分析:

主要难在边与节点的关系,求直径即求路径长度,关键在求边

解题方法分析:

树的遍历方式总体分为两类:深度优先搜索(DFS)、广度优先搜索(BFS)。

常见 DFS : 先序遍历、中序遍历、后序遍历。

相关解题文章链接:

二叉树的前序遍历,力扣-CSDN博客

二叉树的中序遍历,力扣-CSDN博客

二叉树的中序遍历,力扣-CSDN博客

常见 BFS : 层序遍历(即按层遍历)。

相关解题文章链接:

二叉树的层序遍历,力扣-CSDN博客

求二叉树的最大深度

二叉树的最大深度,力扣-CSDN博客

解题分析:

首先我们知道

一条路径的长度为该路径经过的节点数-1即边数,

所以求直径(即求路径长度的最大值)等效于

求路径经过节点数的最大值-1。

而任意一条路径均可以被看作由某个节点为起点,从其左儿子和右儿子向下遍历的路径拼接得到。

二叉树的直径,力扣_第2张图片

如图我们可以知道路径 [9, 4, 2, 5, 7, 8] 可以被看作以 2 为起点,从其左儿子向下遍历的路径 [2, 4, 9] 和从其右儿子向下遍历的路径 [2, 5, 7, 8] 拼接得到。

假设我们知道对于该节点的左儿子向下遍历经过最多的节点数 L(即以左儿子为根的子树的深度)和其右儿子向下遍历经过最多的节点数 R (即以右儿子为根的子树的深度),那么以该节点为起点的路径经过节点数的最大值即为 L+R+1(1即该节点) 。

我们记节点 node 为起点的路径经过节点数的最大值为dnode,

那么二叉树的直径就是所有节点dnode的最大值-1即边数。

解题思路:

1、设一个全局变量 ans 记录 dnoded的最大值

2、定义递归函depth(node) 计算 dnoded(函数返回该节点为根的子树的深度)

           ·设置终止递归,访问到空节点,即node=null,则返回0

           ·递归调用左右儿子分别求得它们为根的子树的深度 L 和 R,

           ·更新ans,即该节点的 dnoded值为L+R+1

           ·返回该节点为根的子树的深度即为max(L,R)+1

代码实现:

class Solution {
    int ans;    //设一个全局变量ans记录节点数的最大值
    public int diameterOfBinaryTree(TreeNode root) {
        ans = 1;
        depth(root);
        return ans - 1;  //节点数-1,即边数
    }
    public int depth(TreeNode node) {
        if (node == null) {
            return 0; // 访问到空节点了,返回0
        }
        int L = depth(node.left); // 左儿子为根的子树的深度
        int R = depth(node.right); // 右儿子为根的子树的深度
        ans = Math.max(ans, L+R+1); // 计算d_node即L+R+1 并更新ans
        return Math.max(L, R) + 1; // 返回该节点为根的子树的深度
    }
}

补充说明:

1、变量ans初始化为1,方便返回-1操作,当该树为空树时,边数为0

2、 在递归函数中,注意返回的是该节点为根的子树深度,而整棵数的直径为全局变量ans-1

3、可能有朋友已经发现代码里面的-1,+1操作有些脱裤子放屁之意,不过这样子其实有助于我们理解路径规律与解题思路

代码优化:

上面通过节点数让我们更好的理解路径的规律与求路径的思路方法,即通过点获取边 。

接下来,我们直接通过求边即可

class Solution {
    int maxd=0;//定义全局变量,初始化为0
    public int diameterOfBinaryTree(TreeNode root) {
        depth(root);
        return maxd;
    }
    public int depth(TreeNode node){
        if(node==null){
            return 0;
        }
        int Left = depth(node.left);
        int Right = depth(node.right);
        maxd=Math.max(Left+Right,maxd);//将每个节点最大直径(左子树深度+右子树深度)
                                           // 与当前最大值比较并取大者
        return Math.max(Left,Right)+1;
    }
}

你可能感兴趣的:(#,树/二叉树,算法)