【深度学习程序实例】

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

以下是一个使用Python编写的深度学习程序实例,用于训练一个简单的神经网络来分类手写数字:

import tensorflow as tf
from tensorflow.keras.datasets import mnist

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建神经网络模型
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)

# 使用模型进行预测
predictions = model.predict(x_test[:5])
print('Predictions:', predictions)

这个程序使用TensorFlow深度学习框架,通过加载MNIST数据集进行手写数字分类任务。首先,将数据进行预处理,将像素值缩放到0到1之间。然后,构建一个简单的神经网络模型,包括一个输入层、一个隐藏层和一个输出层。接下来,编译模型,指定优化器、损失函数和评估指标。然后,使用训练数据训练模型,并在测试数据上评估模型的性能。最后,使用模型进行预测并输出结果。

你可能感兴趣的:(深度学习)