判断数组相同数c语言_14个经典C语言算法你就不看一眼?(附详细代码)

今天,给大家讲一讲,单片机常用的14个C语言算法(附详细代码)哟!

一、计数、求和、求阶乘等简单算法

此类问题都要使用循环,要注意根据问题确定循环变量的初值、终值或结束条件,更要注意用来表示计数、和、阶乘的变量的初值。

例:用随机函数产生100个[0,99]范围内的随机整数,统计个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数并打印出来。

本题使用数组来处理,用数组a[100]存放产生的确100个随机整数,数组x[10]来存放个位上的数字分别为1,2,3,4,5,6,7,8,9,0的数的个数。即个位是1的个数存放在x[1]中,个位是2的个数存放在x[2]中,……个位是0的个数存放在x[10]。
void main()

{

int a[101],x[11],i,p;

for(i=0;i<=11;i++)

x=0;

for(i=1;i<=100;i++)

{

a=rand() % 100;

printf("%4d",a);

if(i%10==0)printf("n");

}

for(i=1;i<=100;i++)

{

p="a"%10;

if(p==0) p="10";

x[p]=x[p]+1;

}

for(i=1;i<=10;i++)

{

p="i";

if(i==10) p="0";

printf("%d,%dn",p,x);

}

printf("n");

}

二、求两个整数的最大公约数、最小公倍数

分析:求最大公约数的算法思想:(最小公倍数=两个整数之积/最大公约数)

(1) 对于已知两数m,n,使得m>n;

(2) m除以n得余数r;

(3) 若r=0,则n为求得的最大公约数,算法结束;否则执行(4);

(4) m←n,n←r,再重复执行(2)。例如: 求 m="14" ,n=6 的最大公约数.
m n r

14 6 2

6 2 0

void main()

{ int nm,r,n,m,t;

printf("please input two numbers:n");

scanf("%d,%d",&m,&n);

nm=n*m;

if (m

{ t="n"; n="m"; m="t"; }

r=m%n;

while (r!=0)

{ m="n"; n="r"; r="m"%n; }

printf("最大公约数:%dn",n);

printf("最小公倍数:%dn",nm/n);

}

三、判断素数

只能被1或本身整除的数称为素数 基本思想:把m作为被除数,将2—INT( )作为除数,如果都除不尽,m就是素数,否则就不是。(可用以下程序段实现)

void main()

{ int m,i,k;

printf("please input a number:n");

scanf("%d",&m);

k=sqrt(m);

for(i=2;i

if(m%i==0) break;

if(i>=k)

printf("该数是素数");

else

printf("该数不是素数");

}

将其写成一函数,若为素数返回1,不是则返回0

int prime( m%)

{int i,k;

k=sqrt(m);

for(i=2;i

if(m%i==0) return 0;

return 1;

}

四、验证哥德巴赫猜想

基本思想:n为大于等于6的任一偶数,可分解为n1和n2两个数,分别检查n1和n2是否为素数,如都是,则为一组解。如n1不是素数,就不必再检查n2是否素数。先从n1=3开始,检验n1和n2(n2=N-n1)是否素数。然后使n1+2 再检验n1、n2是否素数,… 直到n1=n/2为止。

利用上面的prime函数,验证哥德巴赫猜想的程序代码如下:

#include "math.h"

int prime(int m)

{ int i,k;

k=sqrt(m);

for(i=2;i

if(m%i==0) break;

if(i>=k)

return 1;

else

return 0;

}

main()

{ int x,i;

你可能感兴趣的:(判断数组相同数c语言)