简介
lz4是目前综合来看效率最高的压缩算法,更加侧重压缩解压速度,压缩比并不是第一。在当前的安卓和苹果操作系统中,内存压缩技术就使用的是lz4算法,及时压缩手机内存以带来更多的内存空间。本质上是时间换空间。
压缩原理
lz4压缩算法其实很简单,举个压缩的栗子
输入:abcde_bcdefgh_abcdefghxxxxxxx
输出:abcde_(5,4)fgh_(14,5)fghxxxxxxx
其中两个括号内的便代表的是压缩时检测到的重复项,(5,4) 代表向前5个byte,匹配到的内容长度有4,即"bcde"是一个重复。当然也可以说"cde"是个重复项,但是根据算法实现的输入流扫描顺序,我们取到的是第一个匹配到的,并且长度最长的作为匹配。
1.压缩格式
压缩后的数据是下面的格式
输入:abcde_bcdefgh_abcdefghxxxxxxx
输出:tokenabcde_(5,4)fgh_(14,5)fghxxxxxxx
格式:[token]literals(offset,match length)[token]literals(offset,match length)....
其他情况也可能有连续的匹配:
输入:fghabcde_bcdefgh_abcdefghxxxxxxx
输出:fghabcde_(5,4)(13,3)_(14,5)fghxxxxxxx
格式:[token]literals(offset,match length)[token](offset,match length)....
这里(13,3)长度3其实并不对,match length匹配的长度默认是4
Literals指没有重复、首次出现的字节流,即不可压缩的部分
Match指重复项,可以压缩的部分
Token记录literal长度,match长度。作为解压时候memcpy的参数
2.压缩率
可以想到,如果重复项越多或者越长,压缩率就会越高。上述例子中"bcde"在压缩后,用(5,4)表示,即从4个bytes压缩成了3个bytes来表示,其中offset 2bytes, match length 1byte,能节省1个byte。
3.压缩算法实现
大致流程,压缩过程以至少4个bytes为扫描窗口查找匹配,每次移动1byte进行扫描,遇到重复的就进行压缩。
由于offset用2bytes表示,只能查找到到2^16(64kb)距离的匹配,对于压缩4Kb的内核页,只需要用到12位。
扫描的步长1byte是可以调整的,即对应LZ4_compress_fast机制,步长变长可以提高压缩解压速度,减少压缩率。
我们来看下apple的lz4实现
//src是输入流,dst是输出,还需要使用一个hash表记录前面一段距离内的字符串,用来查找之前是否有匹配
void lz4_encode_2gb(uint8_t ** dst_ptr,
size_t dst_size,
const uint8_t ** src_ptr,
const uint8_t * src_begin,
size_t src_size,
lz4_hash_entry_t hash_table[LZ4_COMPRESS_HASH_ENTRIES],
int skip_final_literals)
{
uint8_t *dst = *dst_ptr; // current output stream position
uint8_t *end = dst + dst_size - LZ4_GOFAST_SAFETY_MARGIN;
const uint8_t *src = *src_ptr; // current input stream literal to encode
const uint8_t *src_end = src + src_size - LZ4_GOFAST_SAFETY_MARGIN;
const uint8_t *match_begin = 0; // first byte of matched sequence
const uint8_t *match_end = 0; // first byte after matched sequence
//苹果这里使用了一个early abort机制,即输入流扫描到lz4_do_abort_eval位置的时候,仍然没有匹配,则认为该输入无法压缩,提前结束不用全部扫描完
#if LZ4_EARLY_ABORT
uint8_t * const dst_begin = dst;
uint32_t lz4_do_abort_eval = lz4_do_early_abort;
#endif
while (dst < end)
{
ptrdiff_t match_distance = 0;
//for循环一次查找到一个match即跳出到EXPAND_FORWARD
for (match_begin = src; match_begin < src_end; match_begin += 1) {
const uint32_t pos = (uint32_t)(match_begin - src_begin);
//苹果这里实现比较奇怪,还在思考为何同时查找连续四个bytes的匹配
const uint32_t w0 = load4(match_begin);//该位置4个bytes的内容
const uint32_t w1 = load4(match_begin + 1);
const uint32_t w2 = load4(match_begin + 2);
const uint32_t w3 = load4(match_begin + 3);
const int i0 = lz4_hash(w0);
const int i1 = lz4_hash(w1);
const int i2 = lz4_hash(w2);
const int i3 = lz4_hash(w3);
const uint8_t *c0 = src_begin + hash_table[i0].offset;
const uint8_t *c1 = src_begin + hash_table[i1].offset;
const uint8_t *c2 = src_begin + hash_table[i2].offset;
const uint8_t *c3 = src_begin + hash_table[i3].offset;
const uint32_t m0 = hash_table[i0].word;//取出hash表中以前有没有一样的值
const uint32_t m1 = hash_table[i1].word;
const uint32_t m2 = hash_table[i2].word;
const uint32_t m3 = hash_table[i3].word;
hash_table[i0].offset = pos;
hash_table[i0].word = w0;
hash_table[i1].offset = pos + 1;
hash_table[i1].word = w1;
hash_table[i2].offset = pos + 2;
hash_table[i2].word = w2;
hash_table[i3].offset = pos + 3;
hash_table[i3].word = w3;
match_distance = (match_begin - c0);
//比较hash表中的值和当前指针位置的hash值
if (w0 == m0 && match_distance < 0x10000 && match_distance > 0) {
match_end = match_begin + 4;
goto EXPAND_FORWARD;
}
match_begin++;
match_distance = (match_begin - c1);
if (w1 == m1 && match_distance < 0x10000 && match_distance > 0) {
match_end = match_begin + 4;
goto EXPAND_FORWARD;
}
match_begin++;
match_distance = (match_begin - c2);
if (w2 == m2 && match_distance < 0x10000 && match_distance > 0) {
match_end = match_begin + 4;
goto EXPAND_FORWARD;
}
match_begin++;
match_distance = (match_begin - c3);
if (w3 == m3 && match_distance < 0x10000 && match_distance > 0) {
match_end = match_begin + 4;
goto EXPAND_FORWARD;
}
#if LZ4_EARLY_ABORT
//DRKTODO: Evaluate unrolling further. 2xunrolling had some modest benefits
if (lz4_do_abort_eval && ((pos) >= LZ4_EARLY_ABORT_EVAL)) {
ptrdiff_t dstd = dst - dst_begin;
//到这仍然没有匹配,放弃
if (dstd == 0) {
lz4_early_aborts++;
return;
}
/* if (dstd >= pos) { */
/* return; */
/* } */
/* ptrdiff_t cbytes = pos - dstd; */
/* if ((cbytes * LZ4_EARLY_ABORT_MIN_COMPRESSION_FACTOR) > pos) { */
/* return; */
/* } */
lz4_do_abort_eval = 0;
}
#endif
}
//到这,整个for循环都没有找到match,直接把整个src拷贝到dst即可
if (skip_final_literals) { *src_ptr = src; *dst_ptr = dst; return; } // do not emit the final literal sequence
// Emit a trailing literal that covers the remainder of the source buffer,
// if we can do so without exceeding the bounds of the destination buffer.
size_t src_remaining = src_end + LZ4_GOFAST_SAFETY_MARGIN - src;
if (src_remaining < 15) {
*dst++ = (uint8_t)(src_remaining << 4);
memcpy(dst, src, 16); dst += src_remaining;
} else {
*dst++ = 0xf0;
dst = lz4_store_length(dst, end, (uint32_t)(src_remaining - 15));
if (dst == 0 || dst + src_remaining >= end) return;
memcpy(dst, src, src_remaining); dst += src_remaining;
}
*dst_ptr = dst;
*src_ptr = src + src_remaining;
return;
EXPAND_FORWARD:
// Expand match forward 查看匹配是否能向前扩展,扩大匹配长度
{
const uint8_t * ref_end = match_end - match_distance;
while (match_end < src_end)
{
size_t n = lz4_nmatch(LZ4_MATCH_SEARCH_LOOP_SIZE, ref_end, match_end);
if (n < LZ4_MATCH_SEARCH_LOOP_SIZE) { match_end += n; break; }
match_end += LZ4_MATCH_SEARCH_LOOP_SIZE;
ref_end += LZ4_MATCH_SEARCH_LOOP_SIZE;
}
}
// Expand match backward 查看匹配是否能向后扩展,扩大匹配长度
{
// match_begin_min = max(src_begin + match_distance,literal)
const uint8_t * match_begin_min = src_begin + match_distance;
match_begin_min = (match_begin_min < src)?src:match_begin_min;
const uint8_t * ref_begin = match_begin - match_distance;
while (match_begin > match_begin_min && ref_begin[-1] == match_begin[-1] ) { match_begin -= 1; ref_begin -= 1; }
}
// Emit match 确定好match的offset和length以后,编码成压缩后的格式
dst = lz4_emit_match((uint32_t)(match_begin - src), (uint32_t)(match_end - match_begin), (uint32_t)match_distance, dst, end, src);
if (!dst) return;
// Update state
src = match_end;
// Update return values to include the last fully encoded match
//刷新src和dst位置,回到while重新开始for循环
*dst_ptr = dst;
*src_ptr = src;
}
}
安卓内存中压缩的实例
该例子是一个起址0xffffffc06185f000的4K页,大部分是0和1,由于length或者offset超长,多了一些特殊处理,这部分可以看安卓的lz4源码
发现两个匹配,压缩后的数据为31bytes,压缩后概览如下
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194336] src 0xffffffc06185f000 literallen 1
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194349] src 0xffffffc06185f000 (1,219) #(offset,match length)
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194359] src 0xffffffc06185f000 literallen 1
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194386] src 0xffffffc06185f000 (3044,7)
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194400] src 0xffffffc06185f000 count 2 compressed 31
---------------------------对应压缩后的原始数据-----------------------------
第一个匹配:
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194411] 0xffffffc06185f000 31 #token:0001 1111 前四位是literal长度1,低4位15表示matchlength长度溢出,要看后面
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194422] 0xffffffc06185f000 0 #literal
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194433] 0xffffffc06185f000 1 #offset 小端序01
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194444] 0xffffffc06185f000 0 #offset
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194459] 0xffffffc06185f000 255 #matchLength begin
09-15 14:35:06.821 <3>[138, kswapd0][ 638.194469] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194483] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194494] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194505] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194551] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194565] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194579] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194590] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194602] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194612] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194624] 0xffffffc06185f000 219 #matchLength end: 219+255*11 3024
第二个匹配:
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194635] 0xffffffc06185f000 31 #Token:0001 1111 前四位是literal长度1
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194646] 0xffffffc06185f000 1 #literal
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194657] 0xffffffc06185f000 228 #offset
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194667] 0xffffffc06185f000 11 #offset 228(1110 0100) 11(1011) 改为小端序(1011 1110 0100)即3044
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194678] 0xffffffc06185f000 255 #matchLength begin
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194689] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194701] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194712] 0xffffffc06185f000 255
09-15 14:35:06.822 <3>[138, kswapd0][ 638.194747] 0xffffffc06185f000 7 #matchLength end:255*4+7 1027
解压算法
压缩理解了其实解压也很简单
输入:[token]abcde_(5,4)[token]fgh_(14,5)fghxxxxxxx
输出:abcde_bcdefgh_abcdefghxxxxxxx
根据解压前的数据流,取出token内的length,literals直接复制到输出,即memcpy(src,dst,length)
遇到match,在从前面已经拷贝的literals复制到后面即可