- 基于llama-factory+ollama+vllm加速大模型训推生产
zwxu_
大模型专栏llama人工智能大模型
目录一、名称解释1.1产品定义二、llama-factory工具使用2.1基础镜像2.2、模型训练2.2.1以Qwen2.5-7B-Instruct为例
- Mysql事务
clk6607
mysql数据库
MySQL事务详解(超详细讲解)一、事务是什么?事务(Transaction)是数据库操作的最小执行单元。事务中包含多条SQL,这些SQL要么全部执行成功(提交COMMIT),要么在某条失败时全部撤销(回滚ROLLBACK)。✅你可以这样理解:就像Java中的try-catch-finally,只不过这里是在数据库层。二、事务的四大特性(ACID)特性含义示例A-原子性一组操作是不可分割的整体转账
- Spring Cloud Bus 和 Spring Cloud Stream
中国lanwp
springboot
SpringCloudBus和SpringCloudStream都是SpringCloud生态中的消息通信组件,但它们的定位和使用场景有显著区别:1.SpringCloudBus核心定位:分布式系统的消息广播(配置刷新、事件传播)。典型场景:通过消息中间件(如RabbitMQ、Kafka)广播配置变更事件,实现所有微服务配置的集中刷新(如结合/actuator/refresh或/actuator/
- Spring Boot 2 多模块项目中配置文件的加载顺序
中国lanwp
springbootjava后端
SpringBoot2多模块项目中配置文件的加载顺序在SpringBoot2多模块项目中,配置文件的加载遵循特定的顺序规则。了解这些规则对于正确管理多模块应用的配置至关重要。一、默认配置文件加载顺序SpringBoot会按照以下顺序加载application.properties或application.yml文件:当前模块的config目录(位于classpath根目录下)classpath:/
- vue3 - 【完整源码】超详细实现网站 / H5 在线预览 pdf 文件功能,支持缩放、旋转、全屏预览、打印、下载、内容检索、主题色定制、侧边缩略图、页码跳转等等(最好用的pdf预览器,注释详细!)
十一猫咪爱养鱼
前端组件与功能(开箱即用)Vue组件与功能(工作经验)vue常见问题解决vue3pdf预览器vue3网页打开pdf文件vue3可自定义界面的pdfvue3pdf网页预览下载vue3项目预览PDF插件组件
效果图在Vue3.js项目中,实现了快速高效的pdf预览器工具组件,附带详细的使用教程与详细的注释,保证一键复制轻松搞定!详细的注释很容易二次修改,很多实用功能,你也可以自定义界面上的样式、DIY一切!组件源码首先
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 深刻解析如何解决在pycharm中导入tensorflow的子模块keras时的报错(导入语法正确)
lovingf
pycharmpythontensorflowkeras
只是导入时报错,但代码仍可以运行1.导入方式正确,但pycharm将其标红2.通过查看tensorflow的官方文件,猜测可能是python版本不适配python需为python3.6-3.9,而我的为python3.113.配置python3.9的环境(详情可看我的另一篇文章),但依然报错4.经过仔细分析,觉得可能是pycharm与tensorflow的适配问题,pycharm无法寻找到tens
- 大语言模型LLM原理篇
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 新手向:代码编写工具推荐
nightunderblackcat
基础环境配置notepad++pycharmpythonintellij-ideajavac++c#
开发者兵器谱:我的高效编码六大神器深度解析在软件开发的世界里,得心应手的工具如同侠客手中的利剑。经过多年的项目锤炼,我精心打磨了一套开发工具链,它们各有所长,助我在不同战场上游刃有余。下面就来深度剖析这六位“数字战友”:一、轻骑兵:Notepad++——闪电编辑与文本处理的王者核心定位:超轻量级文本/代码编辑器,启动如闪电,资源占用极低。看家本领:列编辑模式:Alt+鼠标拖拽或Alt+Shift+
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- 高效实现滚动地图:瓦片渲染技术
郑丢丢
瓦片渲染游戏开发内存优化滚动地图渲染技术
高效实现滚动地图:瓦片渲染技术背景简介在游戏开发中,创建大型、动态的地图是一大挑战,尤其是对于内存的优化要求极高。传统的背景图方式不仅占内存,而且在处理大型地图时效率低下。本文介绍了一种被称为瓦片渲染的技术,它通过将大地图分解为小的图像块(瓦片),有效减少了内存的使用,同时还能实现流畅的滚动效果。瓦片渲染的原理瓦片渲染是一种处理大型游戏地图的方法,它不依赖于一个大型的位图,而是通过数组和小图像块(
- 鸿蒙内核源码分析(互斥锁篇) | 互斥锁比自旋锁丰满多了
OpenHarmony_小贾
移动开发HarmonyOSOpenHarmonyharmonyos移动开发OpenHarmony鸿蒙开发内核机制
内核中哪些地方会用到互斥锁?看图:图中是内核有关模块对互斥锁初始化,有文件,有内存,用消息队列等等,使用面非常的广.其实在给内核源码加注的过程中,会看到大量的自旋锁和互斥锁,它们的存在有序的保证了内核和应用程序的正常运行.是非常基础和重要的功能.概述自旋锁和互斥锁虽都是锁,但解决的问题不同,自旋锁解决用于CPU核间共享内存的竞争,而互斥锁解决线程(任务)间共享内存的竞争.自旋锁的特点是死守共享资源
- Python XPath语法完全指南:从基础到高级应用
红皮西瓜绿了心
python爬虫
PythonXPath语法完全指南:从基础到高级应用XPath(XMLPathLanguage)是一种用于在XML和HTML文档中查找信息的语言,广泛应用于网页抓取、数据提取和自动化测试等领域。本文将全面介绍XPath的核心语法和高级用法,帮助您掌握这一强大的数据定位工具。一、XPath基础语法1.1节点选择XPath提供了多种节点选择方式:/:从根节点开始的绝对路径(如/html/body/di
- 【基础】Golang语言开发环境搭建(Linux主机)
锅锅来了
Golang运维开发实战手册linux运维开发golang
目录1.下载并安装Go语言2.配置环境变量3.验证安装4.配置Go模块5.安装常用开发工具6.配置IDE(可选)7.第一个Go程序在Linux主机上搭建Golang开发环境,你可以按照以下步骤进行操作:1.下载并安装Go语言首先从官网下载Go语言的Linux版本,然后解压到指定目录:#下载Go1.23.10版本(根据需要选择最新稳定版)wgethttps://golang.google.cn/dl
- Spring框架-IOC
五月茶
springjava后端
1.Spring框架的介绍Spring框架是一个开源的JavaEE应用程序主要核心是IOC和AOP两大技术IOC:InversionofControl,控制反转。它是通过将控制权从应用程序中移出,使得对象的创建和管理由框架来完成,从而降低系统间的耦合度。DI:DependencyInjection,依赖注入。它是一种设计模式,属于控制反转的一部分。其基本思想是将对象的依赖(即它所需要的其他对象)通
- VSCode - 使用 WSL(Windows Subsystem for Linux)
anleng6817
开发工具git
一开始我是只将VSCode集成的终端改成WSL的Bash,结果发现内置的GIt用的还是Windows的Git,GitHooks用的Windows的环境,上网搜了一下发现有很复杂的方式,继续翻了翻发现管饭居然有超好用的方式DevelopingintheWindowsSubsystemforLinuxwithVisualStudioCode(虽然有大神指出这种方式还有有难用的地方。。)总之安装Remo
- Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
青铜锁00
#退化论文阅读深度学习论文阅读图像处理
LearningFullyConvolutionalNetworksforIterativeNon-blindDeconvolution1.研究目标与实际问题1.1研究目标1.2实际意义2.创新方法与模型设计2.1核心框架:迭代式梯度域处理2.1.1模型架构2.2关键技术实现2.2.1梯度域去噪网络2.2.2解卷积模块(核心公式实现)2.2.3损失函数设计2.2.4超参数端到端学习2.3与传统方法
- HarmonyOS应用开发进阶:ArkTS高效开发模式与工程实践
一键难忘
harmonyosHarmonyOS应用开发者
文章目录HarmonyOS应用开发进阶:ArkTS高效开发模式与工程实践一、高级组件开发模式1.1自定义组合式组件二、网络通信与数据缓存2.1智能请求管理三、动态交互与动画引擎3.1手势驱动动画四、模块化工程架构4.1分层架构设计4.2动态模块加载五、多设备适配策略5.1响应式布局系统六、性能监测与优化6.1渲染性能分析七、测试与质量保障7.1自动化测试框架八、持续集成与部署8.1自动化构建流程结
- 深入理解HashMap:从数据结构到高并发战场
达利源
java面试题哈希算法散列表算法
以下是我在财税业务中的自我体会:一、核心矛盾与设计哲学想象一个存放千万级纳税人信息的仓库(Map)。你需要:极速存取:输入ID,瞬间定位到对象。动态扩容:纳税人数量激增时,仓库能自动变大。空间高效:避免仓库大部分区域空置。线程安全(可选):多窗口(线程)同时办理业务不混乱。HashMap的答卷:核心武器:数组+链表/红黑树灵魂算法:哈希函数(HashFunction)扩容策略:负载因子(LoadF
- 鸿蒙应用发布全解析:应用模块化的实践
操作系统内核探秘
操作系统内核揭秘OSharmonyos华为ai
鸿蒙应用发布全解析:应用模块化的实践关键词:鸿蒙系统、应用模块化、分布式能力、原子化服务、应用发布、HarmonyOS、开发实践摘要:本文全面解析鸿蒙(HarmonyOS)应用发布的核心机制,重点探讨应用模块化设计在鸿蒙生态中的实践。文章从鸿蒙系统架构出发,深入分析模块化应用的设计原理、开发流程和发布策略,结合实际案例展示如何利用鸿蒙的分布式能力和原子化服务特性构建高效、灵活的应用架构。同时,本文
- NEWNEWNEW
莱茵不哈哈
数据结构
1.如何在map中编译删除指定的元素方法1:通过key方法2:通过迭代器2.基类的析构函数为什么建议是虚函数?如果基类的析构函数不是虚函数会导致派生类的析构函数不会被调用,派生类中分配的资源都不会得到释放,会造成资源泄露的问题3.基于内存对齐规则,如何设计一个类?类里面的成员变量我会按照从大到小的原则排列,比如有doublie,char,int类型的成员classGoodDesign{double
- 一封邮件读懂准确率、精准率、召回率、F1 Score
fairymt
产品经理的AI秘籍AIGC人工智能AI作画chatgptai
文章目录场景设定核心目标定义样本类别模拟评估结果四大核心指标详解①准确率(Accuracy)②精准率(Precision)③召回率(Recall)④F1Score如何选对指标?总结场景设定场景:公司开发了一个AI邮箱垃圾邮件(Spam)过滤器。我要评估这款AI垃圾邮件过滤器,判断它是否“合格”。核心目标核心目标:我们希望它能尽可能识别出所有垃圾邮件(别放过坏人);尽量不误伤正常邮件(不冤枉好人)。
- 从摄像头接入到图像处理,TDA4VM带你一次搞定ADAS中控设计
空间机器人
ADAS方案精讲图像处理人工智能
一张图全懂TDA4VM汽车感知中枢!从架构到踩坑,干货分析+选型建议写在前面:一块“脑子清醒”的车规芯片,是怎么思考的?别看这张图密密麻麻,其实它就是TI为车载/工业应用打磨多年的“感知-处理-输出”三段式架构,在这块Jacinto7J721ESOM评估板上体现得淋漓尽致:一句话总结:这不是开发板,这是把整个智能汽车的“中控大脑”装进了一个PCB。模块一:中央处理器区域(SOM板核心)=车脑J72
- python rest framework_Python Django rest framework
本节内容Djangorestframework安装Djangorestframwwork环境配置简单举例说明Django中使用restframework1.1安装Djangorestframework建立新的环境可以忽略virtualenvenvsourceenv/bin/activate安装djangorestframework模块pipinstalldjangopipinstalldjango
- 智能之火,重塑创造:大模型如何点燃新一代开发引擎?
黑巧克力可减脂
AIGC人工智能AIGC
导言:普罗米修斯之火再现在科技演进的长河中,每一次生产力的跃迁都伴随着工具的质变。从蒸汽机轰鸣到电力普及,再到信息高速公路的铺就,人类驾驭能量的能力不断突破。今天,我们站在一个崭新的临界点上:大语言模型(LLM)正将人工智能的“普罗米修斯之火”引入软件开发的核心腹地。这不再仅仅是效率的优化,更是对开发者角色、开发流程乃至软件本质的深度重塑。GitHubCEOThomasDohmke曾断言:“Cop
- 电商搜索新纪元:大模型引领购物体验革新
大模型教程
职场和发展大模型AI大模型算法人工智能
随着电商行业的蓬勃发展,搜索技术作为连接用户与商品的桥梁,其重要性日益凸显。在技术不断革新的今天,电商搜索技术经历了哪些阶段?面对大模型的飞速发展,企业又将如何把握趋势,应对挑战?为了深入探讨这些问题,京东技术总监翟周伟与InfoQ栏目探讨了电商搜索技术的发展历程、当前的应用状况以及面临的挑战和未来的发展方向。以下是采访的详细内容。InfoQ:在您看来电商搜索经历了哪些阶段?翟周伟:我从技术发展的
- LoRA 实战指南:NLP 与 CV 场景的高效微调方法全解析
fairymt
产品经理的AI秘籍自然语言处理人工智能机器学习
大模型已成AI应用的“标配”,但高昂的训练和部署成本让很多企业望而却步。LoRA(Low-RankAdaptation)作为一种轻量级微调方案,正成为NLP与CV场景中低成本定制的利器。本文详细通过详细介绍LoRA的核心原理、在文本与图像任务中的应用场景、主流工具框架与实践方式,帮助你快速掌握这项高性价比技术。国产生态实战:基于LLaMA-Factory+DeepSeek+LoRA+FastAPI
- 智能新纪元:大语言模型如何重塑电商“人货场”经典范式
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
开篇引言“善战者,求之于势,不责于人。”——《孙子兵法·兵势篇》当全球电商交易额突破6.3万亿美元(Statista2024),增长引擎却显露疲态。流量红利消退、同质化竞争加剧、消费者需求碎片化——传统“人货场”理论正遭遇前所未有的挑战。而大语言模型(LLM)的出现,恰似一柄重铸商业逻辑的“科技之锤”,正在为电商领域开启一场静水深流的革命性变革。基石重塑:当“人货场”遇见大模型智能经典理论再审视:
- 达梦dsc与mpp集群机制比较
wyllove97
数据库dba
达梦数据库现有2套分布式产品,即DMdsc共享存储集群以及DMmpp非共享存储集群DMdsc共享存储集群:该产品功能类似于oraclerac,具有高可用性和高伸缩性的特征,可提供横向扩展,实现超单一服务器的功能。其提升了错误恢复能力,并且随着系统增长而逐步扩展。一旦系统发生失败,该集群对用户保证最高可用性,保障关键业务数据不被丢失。拓扑图如下图所示:在配置DMdsc时,需配置两套网络,一套用于提供
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不