JAVA代码编写
给你一个整数数组 nums
和一个整数 k
,按以下方法修改该数组:
i
并将 nums[i]
替换为 -nums[i]
。重复这个过程恰好 k
次。可以多次选择同一个下标 i
。
以这种方式修改数组后,返回数组 可能的最大和 。
示例 1:
输入:nums = [4,2,3], k = 1
输出:5
解释:选择下标 1 ,nums 变为 [4,-2,3] 。
示例 2:
输入:nums = [3,-1,0,2], k = 3
输出:6
解释:选择下标 (1, 2, 2) ,nums 变为 [3,1,0,2] 。
示例 3:
输入:nums = [2,-3,-1,5,-4], k = 2
输出:13
解释:选择下标 (1, 4) ,nums 变为 [2,3,-1,5,4] 。
提示:
1 <= nums.length <= 104
-100 <= nums[i] <= 100
1 <= k <= 104
教程:https://programmercarl.com/1005.K%E6%AC%A1%E5%8F%96%E5%8F%8D%E5%90%8E%E6%9C%80%E5%A4%A7%E5%8C%96%E7%9A%84%E6%95%B0%E7%BB%84%E5%92%8C.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE
思路:对数组先排序,每次选择最小的数取负,如果最小的是0,则跳出循环,因为0取负还是本身,可以进行很多次。
复杂度分析:
class Solution {
public int largestSumAfterKNegations(int[] nums, int k) {
while(k>0){
Arrays.sort(nums);
nums[0] = -nums[0];
if (nums[0]==0)
break;
k--;
}
int sum = 0;
for(int i=0;i<nums.length;i++){
sum += nums[i];
}
return sum;
}
}
思路:
复杂度分析:
import java.util.Arrays;
import java.util.stream.IntStream;
class Solution {
public int largestSumAfterKNegations(int[] nums, int K) {
// 将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
nums = IntStream.of(nums)
.boxed()
.sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
.mapToInt(Integer::intValue).toArray();
int len = nums.length;
for (int i = 0; i < len; i++) {
//从前向后遍历,遇到负数将其变为正数,同时K--
if (nums[i] < 0 && K > 0) {
nums[i] = -nums[i];
K--;
}
}
// 如果K还大于0,那么反复转变数值最小的元素,将K用完
if (K % 2 == 1) nums[len - 1] = -nums[len - 1];
return Arrays.stream(nums).sum();
}
public static void main(String[] args) {
Solution solution = new Solution();
solution.largestSumAfterKNegations(new int[] {-2,9,9,8,4},5);
}
}
代码中
nums = IntStream.of(nums)
.boxed()
.sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
.mapToInt(Integer::intValue).toArray();
不太能懂,java不扎实。
IntStream.of(nums)
: 将原始的int数组nums转换为一个IntStream流。.boxed()
: 将IntStream流中的每个元素装箱成Integer对象,这一步是为了后续使用sorted方法进行排序。.sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
: 使用sorted方法对流中的元素进行排序,排序规则是按照元素绝对值的大小从大到小进行排序。这里使用了Lambda表达式作为排序规则的实现。
- 如果
o2
的绝对值大于o1
的绝对值,则返回一个正数,表示o2
应该排在o1
前面;- 如果
o2
的绝对值等于o1
的绝对值,则返回0,表示o2
和o1
的顺序无所谓;- 如果
o2
的绝对值小于o1
的绝对值,则返回一个负数,表示o2
应该排在o1
后面。.mapToInt(Integer::intValue)
: 将流中的Integer对象重新映射为int类型。.toArray()
: 将流中的元素收集到一个新的int数组中,最终得到排完序的int数组。
在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
教程:https://programmercarl.com/0134.%E5%8A%A0%E6%B2%B9%E7%AB%99.html
思路:直接从全局进行贪心选择,情况如下:
复杂度分析:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int sum = 0;
int min = 0;
for (int i = 0; i < gas.length; i++) {
sum += (gas[i] - cost[i]);
min = Math.min(sum, min);
}
if (sum < 0) return -1;
if (min >= 0) return 0;
for (int i = gas.length - 1; i > 0; i--) {
min += (gas[i] - cost[i]);
if (min >= 0) return i;
}
return -1;
}
}
思路:首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
每个加油站的剩余量rest[i]为gas[i] - cost[i]。
i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。
复杂度分析:
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int curSum = 0;
int totalSum = 0;
int index = 0;
for (int i = 0; i < gas.length; i++) {
curSum += gas[i] - cost[i];
totalSum += gas[i] - cost[i];
if (curSum < 0) { // 当前累加rest[i]和 curSum一旦小于0
index = (i + 1) % gas.length ; // 起始位置更新为i+1
curSum = 0; // curSum从0开始
}
}
if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
return index;
}
}
n
个孩子站成一排。给你一个整数数组 ratings
表示每个孩子的评分。
你需要按照以下要求,给这些孩子分发糖果:
1
个糖果。请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
示例 1:
输入:ratings = [1,0,2]
输出:5
解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:ratings = [1,2,2]
输出:4
解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。
第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。
提示:
n == ratings.length
1 <= n <= 2 * 104
0 <= ratings[i] <= 2 * 104
教程:https://programmercarl.com/0135.%E5%88%86%E5%8F%91%E7%B3%96%E6%9E%9C.html
思路:采用了两次贪心的策略:
复杂度分析:
class Solution {
/**
分两个阶段
1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大
*/
public int candy(int[] ratings) {
int len = ratings.length;
int[] candyVec = new int[len];
candyVec[0] = 1;
for (int i = 1; i < len; i++) {
candyVec[i] = (ratings[i] > ratings[i - 1]) ? candyVec[i - 1] + 1 : 1;
}
for (int i = len - 2; i >= 0; i--) {
if (ratings[i] > ratings[i + 1]) {
candyVec[i] = Math.max(candyVec[i], candyVec[i + 1] + 1);
}
}
int ans = 0;
for (int num : candyVec) {
ans += num;
}
return ans;
}
}