- 【软考中级·软件评测师】下午题·面向对象测试之架构考点全析:分层、分布式、微内核与事件驱动
June bug
软考中级:软件评测师知识架构分布式职场和发展学习方法经验分享软考测试
一、分层架构:分层独立与质量特性的双向约束分层架构通过“垂直分层(表示层→服务层→业务逻辑层→数据层)”实现职责隔离,是Web应用、企业级系统的主流架构模式。1.父类成员函数重测场景子类继承父类时,若父类已测成员函数需在子类重测,触发条件分两类:场景1:继承的成员函数在子类中被修改(如逻辑分支新增、算法替换);场景2:成员函数调用了被修改的子类成员函数(父类函数依赖子类重写方法,需验证调用逻辑)。
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 深入理解栈的合法弹出序列验证算法
引言在计算机科学中,栈(Stack)是一种非常重要的数据结构,它遵循"后进先出"(LIFO)的原则。栈在编程语言实现、算法设计、系统调用等方面有着广泛的应用。今天,我们将深入探讨一个关于栈的经典问题:如何验证一个给定的弹出序列是否是某个压入序列的合法弹出序列。这个问题看似简单,却蕴含着栈操作的精髓,也是许多算法面试中的常见题目。问题描述给定两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列
- 2025年中总结
Just Jump
人生经历思考反思认知方法2025年中总结
2025年中总结。一如往年惯例,总结近半年工作中的体悟和经验。一、把大而难的事拆解成小而具体的小目标。专注解决小目标,每周迭代交付,先完成再完善。1.1把大任务拆解成具体可执行的小目标2025年5月起我开始做大模型相关的技术调研、技术升级和开发工作。传统的机器学习、深度学习算法和大模型的算法在技术知识上还是有很大的差异的。想要快速转型使用大模型做开发、训练,是需要些时间和精力投入的,这并不是一个简
- 充电桩 APP 开发:技术架构与核心功能
一品威客网
架构
随着新能源汽车的普及,充电桩APP成为连接用户与充电设施的关键枢纽。这类APP的开发需兼顾用户体验与运营效率,以下从技术实现与功能设计两方面展开分析。技术架构设计实时数据交互:采用MQTT协议实现充电桩状态(空闲/充电中/故障)的实时推送,确保用户获取最新信息。定位与地图服务:集成高德/Baidu地图SDK,通过POI搜索与路径规划算法,优化充电桩位置展示与导航体验。支付系统:对接微信/支付宝支付
- 物流运输企业如何构建数字化管理系统
在数字化浪潮下,物流运输企业构建数字化管理系统成为提升竞争力的关键。当前,企业常面临信息传递滞后、资源调配低效、运输监控不足等问题,构建数字化管理系统可有效解决这些难题。系统搭建需涵盖多个核心模块。运输管理模块通过智能调度算法,根据货物信息、车辆状态、路线情况,优化运输路径,实现车辆高效调配,减少空载率;仓储管理模块利用物联网技术,实时监控货物存储状态、库存数量,结合数据分析实现智能补货,提升仓储
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- 2-感知机学习算法
罗东琦
统计学习笔记
感知机模型感知机学习策略学习算法算法收敛性对偶形式与线性SVM的异同感知机(perceptron)是一个线性二分类模型,其目的是寻找一个超平面将正负示例划分开,属于判别模型,也是神经网络与SVM的基础。感知机模型假设输入空间为χ⊆Rnχ⊆Rn,输出空间为Υ⊆{+1,−1}Υ⊆{+1,−1}。输入x∈χx∈χ表示实例的特征向量,输出y∈Υy∈Υ表示实例的类别。则下面的函数f(x)=sign(w⋅x+
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- Google 相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破
观熵
影像技术全景图谱:架构调优与实战数码相机影像Camera
Google相机增强(GCam)框架原理初探:图像质量与计算摄影的系统性突破关键词:GCam、GoogleCamera、HDR+、SuperResZoom、Camera2API、多帧合成、算法流程、图像增强、夜视模式、Pixel相机移植摘要:GCam(GoogleCamera)作为Pixel系列设备图像质量表现的核心支撑,其背后的增强框架融合了Google长期积累的计算摄影技术,从HDR+到Sup
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- 算法: 冒泡排序
Code溪
算法java算法数据结构
冒泡排序是一种简单的排序算法,通过相邻元素的比较和交换,使较大的元素逐渐"浮"到数组末尾。时间复杂度:最佳O(n)|平均O(n²)|最差O(n²)空间复杂度:O(1)稳定性:稳定应用场景/前提条件适用于小规模数据对几乎已排序的数据效率较高算法步骤比较相邻的元素。如果第一个比第二个大,就交换它们对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对这步做完后,最后的元素会是最大的数针对所有的元素
- 【力扣—剑指 Offer(第 2 版)简单题目解析汇总】
Wupke
剑指offer数据结构与算法学习LeetCodeleetcode剑指offer数据结构与算法
【力扣—剑指Offer(第2版)简单题目解析汇总】说明1、基本字符串数组数组-排序矩阵/模拟枚举2、算法动态规划深度优先搜索广度优先搜索递归分治记忆化搜索快速选择二分查找3、基础数据结构树(二叉树)二叉搜索树栈队列堆(优先队列)哈希表链表4、技巧性题目双指针位运算计数设计说明简单题目共计38道,按照标签分类为:基本、算法、基础数据结构、技巧等,具体如下。1、基本字符串剑指Offer05.替换空格.
- 【GitHub开源项目实战】高频交易系统实战解析:基于 Nautilus Trader 的策略回测与事件驱动架构优化
观熵
GitHub开源项目实战github开源架构
高频交易系统实战解析:基于NautilusTrader的策略回测与事件驱动架构优化关键词:高频交易、事件驱动架构、NautilusTrader、量化回测、算法交易、PythonCython、交易引擎、回测系统、交易策略框架、实战优化摘要:本篇博客围绕GitHub上高质量的开源项目nautechsystems/nautilus_trader展开系统性实战解析。NautilusTrader是一套为专业
- 【点云压缩】Haar小波变换与RAHT自适应区域层级变换
丶契阔
算法
Haar小波小波变换由一堆小波基和其系数组成,小波基又分为母小波(低频的)和父小波(高频的)。常用于二维图形处理的小波变换是Haar小波变换,Haar小波变换具有压缩比、抗干扰、速度快的特点,经过小波变换后的系数数据会变得具有规律性,方便后续处理算法进行压缩,同时一些值较小的分量置0不影响图片整体观感。截取了PCL-AVS-PCC一段小波变换点云压缩的代码voidWaveletCoreTransf
- 从零开始大模型开发与微调:PyTorch中的卷积函数实现详解
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch中的卷积函数实现详解1.背景介绍1.1大模型开发的意义1.2卷积神经网络在大模型中的应用1.3PyTorch框架简介2.核心概念与联系2.1卷积的数学定义2.2卷积神经网络的组成2.2.1卷积层2.2.2池化层2.2.3全连接层2.3卷积与大模型的关系3.核心算法原理具体操作步骤3.1卷积的前向传播3.2卷积的反向传播3.3卷积的优化策略3.3.1卷积核大小
- C++(20/23)标准模板库编程 - 1 C++ 回顾
akluse
C++c++开发语言
引言现代C++编程最引人注目的特点或许并非其语言本身的表达性语法与语义,而是标准模板库(STL)。STL是一个包含多功能模板类与算法的庞大集合。若运用得当,STL能显著简化和提升高性能优质软件的开发流程。然而对于许多C++程序员——无论是初学者还是资深开发者——要掌握如何有效运用STL的编程结构往往令人望而生畏。《实用C++STL编程》作为指导性教材,将教会您如何成功应用STL的类、算法及其他编程
- 插入排序解析
老一岁
算法数据结构排序算法
可以将插入排序类比为整理扑克牌的过程:左手持已排序的牌(初始为空)右手从桌上未排序的牌堆中逐张取牌将取到的牌插入左手正确位置最终左手持完全有序的牌前言一、算法工作原理插入排序是一种基于比较的简单排序算法,其核心思想是逐步构建有序序列。算法将待排序数组视为两个部分:已排序部分(初始时仅包含第一个元素)和未排序部分。通过不断从未排序部分取出元素,在已排序部分中找到适当位置插入,最终完成整个数组的排序。
- 深度剖析数据中台:大数据领域的核心技术架构
大数据洞察
大数据架构javaai
深度剖析数据中台:大数据领域的核心技术架构关键词:数据中台、大数据、核心技术架构、数据治理、数据服务摘要:本文旨在对数据中台这一大数据领域的核心技术架构进行深度剖析。首先介绍了数据中台的背景,包括其目的、适用读者、文档结构和相关术语。接着阐述了数据中台的核心概念、原理和架构,通过文本示意图和Mermaid流程图进行直观展示。详细讲解了核心算法原理及具体操作步骤,并结合Python源代码进行说明。引
- 运筹系列91:vrp算法包PyVRP
IE06
运筹学人工智能
1.介绍PyVRP使用HGS(hybridgeneticsearch)算法求解VRP类问题。在benchmark上的评测结果如下,看起来还不错:2.使用例子2.1CVRPCOORDS=[(456,320),#location0-thedepot(228,0),#location1(912,0),#location2(0,80),#location3(114,80),#location4(570,1
- 设计哈希集合【set】【拉链法】【位运算法】【定长拉链法】 - 哈希表本质深度解析
weixin_47868976
哈希算法散列表算法
LeetCode705设计哈希集合-哈希表本质深度解析题目描述设计一个哈希集合(HashSet),不使用任何内建的哈希表库,实现以下操作:add(key):向哈希集合中插入值keyremove(key):将给定值key从哈希集合中删除contains(key):返回哈希集合中是否存在这个值key数据范围:0data;public:MyHashSet(){//10^6+1大小的数组,key直接作为索
- 堆排序实现及复杂度分析
hixiaoyang
算法排序算法数据结构
一、算法概述堆排序(HeapSort)是一种基于二叉堆数据结构的比较排序算法。它利用了堆这种数据结构的特性:最大堆:每个节点的值都大于或等于其子节点的值最小堆:每个节点的值都小于或等于其子节点的值堆排序是不稳定排序算法,时间复杂度为O(nlogn),空间复杂度为O(1)二、算法步骤1.构建初始堆将无序数组构建成一个最大堆(升序排序时)2.交换与调整将堆顶元素(最大值)与末尾元素交换缩小堆的范围,重
- Web3.0 技术应用溯源系统建设
天机️灵韵
区块链区块链web3.0
Web3.0技术与溯源(TrackandTrace)的结合,是区块链等去中心化技术在实际应用中的典型场景之一。通过Web3.0的底层技术,可以构建透明、不可篡改且可验证的溯源系统,解决传统供应链、商品流通等领域的数据信任问题。以下是两者的深度关联与具体应用:一、Web3.0如何赋能溯源?区块链的不可篡改性核心机制:区块链通过哈希链、共识算法(如PoW/PoS)确保数据一旦上链,无法被单一方修改或删
- AI原生应用监控:实时领域偏见预警系统设计原理
Agentic AI人工智能与大数据
CSDNAI-native人工智能ai
AI原生应用监控:实时领域偏见预警系统设计原理关键词AI监控、算法偏见、实时预警、公平性AI、模型监控、偏见检测、AI治理摘要在人工智能驱动决策日益普及的今天,AI系统中的隐性偏见已成为影响公平性、可信度和业务连续性的关键风险。本文深入探讨了AI原生应用监控的核心挑战,重点剖析了实时领域偏见预警系统的设计原理与实现方法。通过将复杂的算法偏见比作"数字世界的隐形滤镜",我们揭示了偏见如何在AI系统中
- 【加密】对称加密DES和非对称加密AES、数字签名
bdview
算法区块链密码学openssljava
目录对称加密1.1定义1.2优缺点1.3常用对称加密算法非对称加密(AsymmetricCryptography)非对称加密(现代加密算法)2.1定义数字签名非常好的文章:《三分钟了解对称加密和非对称加密是如何工作的》https://zhuanlan.zhihu.com/p/108627377主要加密算法有哪些:https://blog.csdn.net/baidu_22254181/articl
- 【数据结构与算法】单向链表(添加节点、顺序添加节点、更新节点、删除节点、反转链表、获取链表长度、获取倒数第几个节点、打印链表、反转打印链表)
目录1.单向链表的介绍2.带head头的单向链表实现1.单向链表的介绍单向链表是有序的列表。以节点的方式来存储,是链式存储,每个节点包含data域和next域(指向下一个节点),所以单向链表在内存中的储存是无序的单向链表分带头节点的单向链表,和没有头节点的单向链表2.带head头的单向链表实现实现对单向链表的增、删、改、查等操作单向链表各节点说明:head节点:不储存数据,next指向下一个节点最
- 招聘 | 美团 AI 搜索:致力用 AI 技术创造极致的搜索和交互体验
美团技术团队
人工智能大数据
敢用算法定义下一代搜索体验吗?我们正在寻找「AI狂热分子」——能让搜索结果秒懂用户灵魂需求的算法魔法师、精准雕琢搜索体验的算法工程技术革新者敢用大模型重构搜索逻辑的技术造浪者、深耕算法工程实践的大模型架构驾驭者愿用数据和代码解锁智能边界的未来架构师、用工程代码与数据打破技术边界的技术领航人和我们一起,可以做些什么?AI搜索团队致力于打造以智能搜索为核心的新型产品,以满足用户需求为目标,专注于为用户
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 在单向链表中插入节点——C语言基础
FifthDesign
链表单链表数据结构算法C语言
向单向链表插入节点前言:链表的插入过程就是把新建的节点插入到已有的链表中,鉴于此种理解,也可以把链表的创建看做是一种特殊的插入节点过程,但是具体来说,链表的插入较于链表的创建来说稍复杂一些。文章目录向单向链表插入节点一、问题描述二、算法描述三、代码部分1.structure.h2.insert.h四、代码解析1.对于单向链表来说,插入为什么需要引入两个工具指针?2.指针变量的初始化![在这里插入图
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理