【51CTO.com原创稿件】
一、引言
一说到异步任务,很多人上来咔咔新建个线程池。为了防止线程数量肆虐,一般还会考虑使用单例模式创建线程池,具体使用方法大都如下面的代码所示:
@Test
publicvoiddemo1() throwsExecutionException, InterruptedException {
ExecutorServiceexecutorService=Executors.newFixedThreadPool(5);
Futurefuture1=executorService.submit(newCallable() {
@Override
publicObjectcall() throwsException {
returnThread.currentThread().getName();}
});
System.out.println(future1.get());
executorService.execute(newRunnable() {
@Overridepublicvoidrun() {
System.out.println(Thread.currentThread().getName());
}
});
}
经常使用 JavaScript 的同学相信对于异步回调的用法相当熟悉了,毕竟 JavaScript 拥有“回调地狱”的美誉。
我们大 Java 又开启了新一轮模仿之旅。
java.util.concurrent 包新增了 CompletableFuture 类可以实现类似 JavaScript 的连续回调。
二、两种基本用法
先来看下 CompletableFuture 的两种基本⽤法,代码如下:
@Test
publicvoid index1() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture1 = CompletableFuture.supplyAsync(() -> Thread.currentThread().getName());
CompletableFuture completableFuture2 = CompletableFuture.runAsync(() -> Thread.currentThread().getName());
System.out.println(completableFuture1.get()); System.out.println(completableFuture2.get());
}
打印输出:
ForkJoinPool.commonPool-worker-1
null
初看代码,第一反应是代码简洁。直接调用 CompletableFuture 类的静态方法,提交任务方法就完事了。但是,随之而来的疑问就是,异步任务执行的背后是一套什么逻辑呢?是一对一使用newThread()还是依赖线程池去执行的呢。
三、探索线程池原理
翻阅 CompletableFuture 类的源码,我们找到答案。关键代码如下:
private static final booleanuseCommonPool=
(ForkJoinPool.getCommonPoolParallelism() >1);
/**
* Default executor -- ForkJoinPool.commonPool() unless it cannot
* support parallelism.
*/
private static final Executor asyncPool=useCommonPool?
ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();
可以看到 CompletableFuture 类默认使⽤的是 ForkJoinPool.commonPool() ⽅法返回的线程池。当 然啦,前提是 ForkJoinPool 线程池的数量⼤于 1 。否则,则使⽤ CompletableFuture 类⾃定义的 ThreadPerTaskExecutor 线程池。 ThreadPerTaskExecutor 线程池的实现逻辑⾮常简单,⼀⾏代码简单实现了 Executor 接⼝,内部执⾏ 逻辑是⼀条任务对应⼀条线程。代码如下:
/** Fallback if ForkJoinPool.commonPool() cannot support parallelism */
staticfinal class ThreadPerTaskExecutor implements Executor {
publicvoidexecute(Runnable r) { new Thread(r).start(); }
}
四、两种异步接⼝
之前我们使⽤线程池执⾏异步任务时,当不需要任务执⾏完毕后返回结果的,我们都是实现 Runnable 接⼝。⽽当需要实现返回值时,我们使⽤的则是 Callable 接⼝。 同理,使⽤ CompletableFuture 类的静态⽅法执⾏异步任务时,不需要返回结果的也是实现 Runnable 接⼝。⽽当需要实现返回值时,我们使⽤的则是 Supplier 接⼝。其实,Callable 接⼝和 Supplier 接⼝ 并没有什么区别。 接下来,我们来分析⼀下 CompletableFuture 是如何实现异步任务执⾏的。
runAsync
CompletableFuture 执⾏⽆返回值任务的是 runAsync() ⽅法。该⽅法的关键执⾏代码如下:
staticCompletableFuture asyncRunStage(Executor e, Runnable f) {
if (f == null) throw new NullPointerException();
CompletableFuture d = new CompletableFuture();
e.execute(new AsyncRun(d, f));
returnd;
}
可以看到,该⽅法将 Runnable 实例作为参数封装⾄ AsyncRun 类。实际上, AsyncRun 类是对 Runnable 接⼝的进⼀步封装。实际上,AsyncRun 类也是实现了 Runnable 接⼝。观察下⽅ AsyncRun 类的源码,可以看到 AsyncRun 类的 run() ⽅法中调⽤了 Runnable 参数的 run() ⽅法。
publicvoid run() {
CompletableFuture d; Runnable f;
if ((d = dep) != null&& (f = fn) !=null) {
dep = null; fn =null;
if (d.result == null) {
try {
f.run();
d.completeNull();
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
d.postComplete();
}
}
当提交的任务执⾏完毕后,即 f.run() ⽅法执⾏完毕。调⽤ d.completeNull() ⽅法设置任务执⾏结 果为空。代码如下:
/** The encodingofthenullvalue. */
staticfinal AltResult NIL = new AltResult(null);
/** Completes withthenullvalue, unless already completed. */
final boolean completeNull() {
returnUNSAFE.compareAndSwapObject(this, RESULT,null,
NIL);
}
可以看到,对于任务返回值为 null 的执⾏结果,被封装为 new AltResult(null) 对象。⽽且,还是 调⽤的 CAS 本地⽅法实现了原⼦操作。 为什么需要对 null 值进⾏单独封装呢?观察 get() ⽅法的源码:
publicT get() throws InterruptedException, ExecutionException {
Object r;
returnreportGet((r = result) ==null? waitingGet(true) : r);
}
原来原因是便于使⽤ null 值区分异步任务是否执⾏完毕。 如果你对 CAS 不太了解的话,可以查阅 compareAndSwapObject ⽅法的四个参数的含义。该⽅法的参 数 RESULT 是什么呢?查看代码如下:
RESULT = u.objectFieldOffset(k.getDeclaredField("result"));
原来,RESULT 是获取 CompletableFuture 对象中 result 字段的偏移地址。这个 result 字段⼜是啥 呢?就是任务执⾏完毕后的结果值。代码如下:
// Either the resultorboxed AltResult
volatile Object result;
supplyAsync
CompletableFuture 执⾏有返回值任务的是 supplyAsync() ⽅法。该⽅法的关键执⾏代码如下:
static CompletableFuture asyncSupplyStage(Executor e,
Supplier f) {
if (f == null) throw new NullPointerException();
CompletableFuture d = new CompletableFuture();
e.execute(new AsyncSupply(d, f));
returnd;
}
与 AsyncRun 类对 Runnable 接⼝的封装相同的是,AsyncSupply 类也是对 Runnable 接⼝的 run() ⽅ 法进⾏了⼀层封装。代码如下:
publicvoid run() {
CompletableFuture d; Supplier f;
if ((d = dep) != null&& (f = fn) !=null) {
dep = null; fn =null;
if (d.result == null) {
try {
d.completeValue(f.get());
} catch (Throwable ex) {
d.completeThrowable(ex);
}
}
d.postComplete();
}
}
当异步任务执⾏完毕后,返回结果会经 d.completeValue() ⽅法进⾏封装。与 d.completeNull() ⽅ 法不同的是,该⽅法具有⼀个参数。代码如下:
/** Completeswitha non-exceptional result, unless already completed. */
final boolean completeValue(T t) {
returnUNSAFE.compareAndSwapObject(this, RESULT,null,
(t == null) ? NIL : t);
}
⽆论是类 AsyncRun 还是类 AsyncSupply ,run() ⽅法都会在执⾏结束之际调⽤ CompletableFuture 对象的 postComplete() ⽅法。顾名思义,该⽅法将通知后续回调函数的执⾏。
五、探究回调函数原理
前⾯我们提到了 CompletableFuture 具有连续回调的特性。举个例⼦:
@Test
publicvoid demo2() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture =
CompletableFuture.supplyAsync(() -> {
System.out.println(Thread.currentThread().getName());
returnnew ArrayList();
})
.whenCompleteAsync((list, throwable) -> {
System.out.println(Thread.currentThread().getName());
list.add(1);
})
.whenCompleteAsync((list, throwable) -> {
System.out.println(Thread.currentThread().getName());
list.add(2);
})
.whenCompleteAsync((list, throwable) -> {
System.out.println(Thread.currentThread().getName());
list.add(3);
});
System.out.println(completableFuture.get());
}
打印输出:
ForkJoinPool.commonPool-worker-1
ForkJoinPool.commonPool-worker-1
ForkJoinPool.commonPool-worker-1
ForkJoinPool.commonPool-worker-1
[1, 2, 3]
上⾯的测试⽅法中,通过 supplyAsync ⽅法提交异步任务,当异步任务运⾏结束,对结果值添加三个回 调函数进⼀步处理。 观察打印输出,可以初步得出如下结论:
异步任务与回调函数均运⾏在同⼀个线程中。
回调函数的调⽤顺序与添加回调函数的顺序⼀致。
那么问题来了,CompletableFuture 内部是如何处理连续回调函数的呢?
AsyncSupply
当我们提交异步任务时,等价于向线程池提交 AsyncSupply 对象或者 AsyncRun 对象。观察这两个类 的唯⼀构造⽅法都是相同的,代码如下:
AsyncSupply(CompletableFuture dep, Supplier fn) {
this.dep = dep; this.fn = fn;
}
这就将 AsyncSupply 异步任务与返回给⽤户的 CompletableFuture 对象进⾏绑定,⽤于在执⾏结束后 回填结果到 CompletableFuture 对象,以及通知后续回调函数的运⾏。
Completion
回调函数均是 Completion 类的⼦类,抽取 Completion 类与⼦类的关键代码:
Completionnext;
CompletableFuture dep;
CompletableFuture src;
Functionfn;
Completion 类含有 next 字段,很明显是⼀个链表。 Completion 的⼦类含有两个 CompletableFuture 类型的参数,dep 是新建的、⽤于下⼀步的 CompletableFuture 对象,src 则是引⽤它的 CompletableFuture 对象。
当 Completion 执⾏完回调⽅法后,⼀般会返回 dep 对象,⽤于迭代遍历。
CompletableFuture
观察源码,CompletableFuture 主要包含下⾯两个参数:
volatile Object result; //结果
volatile Completion stack; //回调⽅法栈
Completion 类型封装了回调⽅法,但为什么要起名为 stack (栈)呢? 因为 CompletableFuture 借助 Completion 的链表结构实现了栈。每当调⽤ CompletableFuture 对 象的 whenCompleteAsync() 或其它回调⽅法时,都会新建⼀个 Completion 对象,并压到栈顶。代码 如下:
final boolean tryPushStack(Completion c) {
Completion h = stack;
lazySetNext(c, h);
returnUNSAFE.compareAndSwapObject(this, STACK, h, c);
}
postComplete
回顾上⾯两种异步任务类的实现,当异步任务执⾏完毕之后,都会调⽤ postComplete() ⽅法通知回调 ⽅法的执⾏。代码如下:
final void postComplete() {
CompletableFuture> f = this; Completion h;
while ((h = f.stack) != null||
(f != this && (h = (f = this).stack) != null)) {
CompletableFuture> d; Completion t;
if (f.casStack(h, t = h.next)) {
if (t != null) {
if (f != this) {
pushStack(h);
continue;
}
h.next=null; // detach
}
f = (d = h.tryFire(NESTED)) == null? this : d;
}
}
}
这段代码是本⽂的核⼼部分,⼤致逻辑如下:
当异步任务执⾏结束后,CompletableFuture 会查看⾃身是否含有回调⽅法栈,如果含有,会通过 casStack() ⽅法拿出栈顶元素 h ,此时的栈顶是原来栈的第⼆位元素 t。如果 t 等于 null,那么直接 执⾏回调⽅法 h,并返回下⼀个 CompletableFuture 对象。然后⼀直迭代这个过程。 简化上述思路,我更想称其为通过 Completion 对象实现桥接的 CompletableFuture 链表,流程图如 下:
上⾯的过程是属于正常情况下的,也就是⼀个 CompletableFuture 对象只提交⼀个回调⽅法的情况。 如果我们使⽤同⼀个 CompletableFuture 对象连续调⽤多次回调⽅法,那么就会形成 Completion 栈。
你以为 Completion 栈内元素会依次调⽤,不会的。从代码中来看,当回调⽅法 t 不等于 null,有两种 情况:
情况 1:如果当前迭代到的 CompletableFuture 对象是 this (也就是 CompletableFuture 链表头), 会令 h.next = null ,因为 h.next 也就是 t 通过 CAS 的⽅式压到了 this 对象的 stack 栈顶。
情况 2:如果当前迭代到的 CompletableFuture 对象 f 不是 this (不是链表头)的话,会将回调函数 h 压⼊ this (链表头)的 stack 中。然后从链表头再次迭代遍历。这样下去,对象 f 中的回调⽅法栈假设 为 3-2-1,从 f 的栈顶推出再压⼊ this 的栈顶,顺序就变为了 1-2-3。这时候,情况就变成了第 1 种。
这样,当回调⽅法 t = h.next 等于 null 或者 f 等于 this 时,都会对栈顶的回调⽅法进⾏调⽤。
简单来说,就是将拥有多个回调⽅法的 CompletableFuture 对象的多余的回调⽅法移到到 this 对象的 栈内。
回调⽅法执⾏结束要么返回下⼀个 CompletableFuture 对象,要么返回 null 然后⼿动设置为 f = this, 再次从头遍历。
Async
回调函数的执⾏其实分为两种,区别在于带不带 Async 后缀。例如:
@Test
publicvoid demo3() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture =
CompletableFuture.supplyAsync(() -> {
System.out.println(Thread.currentThread().getName());
returnnew ArrayList();
})
.whenComplete((arrayList, throwable) -> {
System.out.println(Thread.currentThread().getName());
arrayList.add(1);
}).whenCompleteAsync((arrayList, throwable) -> {
System.out.println(Thread.currentThread().getName());
arrayList.add(2);
});
System.out.println(completableFuture.get());
}
打印输出:
ForkJoinPool.commonPool-worker-1
main
ForkJoinPool.commonPool-worker-1
[1, 2]
whenComplete() 和 whenCompleteAsync() ⽅法的区别在于是否在⽴即执⾏。源码如下:
private CompletableFuture uniWhenCompleteStage(
Executor e, BiConsumer super T, ? super Throwable> f) {
if (f == null) throw new NullPointerException();
CompletableFuture d = new CompletableFuture();
if (e != null|| !d.uniWhenComplete(this, f,null)) {
UniWhenComplete c = new UniWhenComplete(e, d, this, f);
push(c);
c.tryFire(SYNC);
}
returnd;
}
两个⽅法都是调⽤的 uniWhenCompleteStage() ,区别在于参数 Executor e 是否为 null。从⽽控制是 否调⽤ d.uniWhenComplete() ⽅法,该⽅法会判断 result 是否为 null,从⽽尝试是否⽴即执⾏该回调 ⽅法。若是 supplyAsync() ⽅法提交的异步任务耗时相对⻓⼀些,那么就不建议使⽤ whenComplete() ⽅法了。此时由 whenComplete() 和 whenCompleteAsync() ⽅法提交的异步任务都会由线程池执⾏。
本章小结
通过本章节的源码分析,我们明白了 Completion 之所以将自身设置为链表结构,是因为 CompletableFuture 需要借助 Completion 的链表结构实现栈。也明白了同一个 CompletableFuture 对象如果多次调用回调方法时执行顺序会与调用的顺序不符合。换言之,一个 CompletableFuture 对象只调用一个回调方法才是 CompletableFuture 设计的初衷,我们在编程中也可以利用这一特性来保证回调方法的调用顺序。
因篇幅有限,本文并没有分析更多的 CompletableFuture 源码,感兴趣的小伙伴可以自行查看。
六、用法集锦
异常处理
方法:
publicCompletableFuture exceptionally(Function fn)
示例:
@Test
publicvoid index2() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> 2 / 0)
.exceptionally((e) -> {
System.out.println(e.getMessage());
return0;
});
System.out.println(completableFuture.get());
}
输出:
java.lang.ArithmeticException: /byzero
0
任务完成后对结果的处理
方法:
publicCompletableFuture whenComplete(BiConsumer super T,? super Throwable>action)
publicCompletableFuture whenCompleteAsync(BiConsumer super T,? super Throwable>action)
publicCompletableFuture whenCompleteAsync(BiConsumer super T,? super Throwable>action, Executor executor)
示例:
@Test
publicvoid index3() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> new HashMap())
.whenComplete((map, throwable) -> {
map.put("key1","value1");
});
System.out.println(completableFuture.get());
}
输出:
{key=value}
任务完成后对结果的转换
方法:
public CompletableFuture thenApply(Function super T,? extends U> fn)
public CompletableFuture thenApplyAsync(Function super T,? extends U> fn)
public CompletableFuture thenApplyAsync(Function super T,? extends U> fn, Executor executor)
示例:
@Test
publicvoid index4() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> 2)
.thenApply((r) -> r + 1);
System.out.println(completableFuture.get());
}
输出:
3
任务完成后对结果的消费
方法:
publicCompletableFuture thenAccept(Consumer super T>action)
publicCompletableFuture thenAcceptAsync(Consumer super T>action)
publicCompletableFuture thenAcceptAsync(Consumer super T>action, Executor executor)
示例:
@Test
publicvoid index5() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> 2)
.thenAccept(System.out::println);
System.out.println(completableFuture.get());
}
输出:
2
null
任务的组合(需等待上一个任务完成)
方法:
public CompletableFuture thenCompose(Function super T,? extends CompletionStage> fn)
public CompletableFuture thenComposeAsync(Function super T,? extends CompletionStage> fn)
public CompletableFuture thenComposeAsync(Function super T,? extends CompletionStage> fn, Executor executor)
示例:
@Test
publicvoid index6() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> 2)
.thenCompose(integer-> CompletableFuture.supplyAsync(() ->integer+ 1));
System.out.println(completableFuture.get());
}
输出:
3
任务的组合(不需等待上一步完成)
方法:
public CompletableFuture thenCombine(CompletionStage extends U> other, BiFunction super T,? super U,? extends V> fn)
public CompletableFuture thenCombineAsync(CompletionStage extends U> other, BiFunction super T,? super U,? extends V> fn)
public CompletableFuture thenCombineAsync(CompletionStage extends U> other, BiFunction super T,? super U,? extends V> fn, Executor executor)
示例:
@Test
publicvoid index7() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> 2)
.thenCombine(CompletableFuture.supplyAsync(() -> 1), (x, y) -> x + y);
System.out.println(completableFuture.get());
}
输出:
3
消费最先执行完毕的其中一个任务,不返回结果
方法:
publicCompletableFuture acceptEither(CompletionStage extends T> other, Consumer super T>action)
publicCompletableFuture acceptEitherAsync(CompletionStage extends T> other, Consumer super T>action)
publicCompletableFuture acceptEitherAsync(CompletionStage extends T> other, Consumer super T>action, Executor executor)
示例:
@Test
publicvoid index8() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
return2;
})
.acceptEither(CompletableFuture.supplyAsync(() -> 1), System.out::println);
System.out.println(completableFuture.get());
}
输出:
1
null
消费最先执行完毕的其中一个任务,并返回结果
方法:
public CompletableFuture applyToEither(CompletionStage extends T> other,Function super T,U> fn)
public CompletableFuture applyToEitherAsync(CompletionStage extends T> other,Function super T,U> fn)
public CompletableFuture applyToEitherAsync(CompletionStage extends T> other,Function super T,U> fn, Executor executor)
示例:
@Test
publicvoid index9() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
return2;
})
.applyToEither(CompletableFuture.supplyAsync(() -> 1), x -> x + 10);
System.out.println(completableFuture.get());
}
输出:
11
等待所有任务完成
方法:
publicstaticCompletableFuture allOf(CompletableFuture>... cfs)
示例:
@Test
publicvoid index10() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture1 = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return1;
});
CompletableFuture completableFuture2 = CompletableFuture.supplyAsync(() -> 2);
CompletableFuture completableFuture = CompletableFuture.allOf(completableFuture1, completableFuture2);
System.out.println("waiting all task finish..");
System.out.println(completableFuture.get());
System.out.println("all task finish");
}
输出:
waitingalltask finish..
null
alltask finish
返回最先完成的任务结果
方法:
publicstaticCompletableFuture anyOf(CompletableFuture>... cfs)
示例:
@Test
publicvoid index11() throws ExecutionException, InterruptedException {
CompletableFuture completableFuture1 = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
return1;
});
CompletableFuture completableFuture2 = CompletableFuture.supplyAsync(() -> 2);
CompletableFuture completableFuture = CompletableFuture.anyOf(completableFuture1, completableFuture2);
System.out.println(completableFuture.get());
}
输出:
2
作者简介:
薛勤,公众号“代码艺术”的作者,就职于阿里巴巴,热衷于探索计算机世界的底层原理,个人在 Github@Ystcode 上拥有多个开源项目。
【51CTO原创稿件,合作站点转载请注明原文作者和出处为51CTO.com】
【责任编辑:庞桂玉 TEL:(010)68476606】
点赞 0