目录
1.程序功能描述
2.测试软件版本以及运行结果展示
3.核心程序
4.本算法原理
4.1 遗传算法(Genetic Algorithm, GA)
4.2 粒子群优化算法(Particle Swarm Optimization, PSO)
4.3 GA-PSO混合优化算法
5.完整程序
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,CDVRP是一个经典的组合优化问题,它要求确定一组最优路径,使得一定数量的车辆从起点出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。
MATLAB2022a版本运行
...........................................
gen=1;
while gen <= Iters
gen
%粒子更新
for i=1:Npop
%交叉
Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
%计算距离
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end
%更新Gbest
[mindis,index] = min(Pdbest);
if mindis < Gdbest
Gbest = Pbest(index,:);
Gdbest = mindis;
end
%粒子与Gbest交叉
Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Gbest(2:end-1));
%粒子变异
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end
%变异
Pops(i,:)=func_Mut(Pops(i,:));
% 新路径长度变短则记录至Pbest
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);%最短距离
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end
%存储此代最短距离
[mindis,index] = min(Pdbest);
%更新迭代次数
if mindis < Gdbest
Gbest = Pbest(index,:);
Gdbest = mindis;
end
end
gbest(gen)=Gdbest;
gen=gen+1;
end
15
在CDVRP问题中,GA-PSO混合算法的具体实现需要针对问题的特点进行相应调整。例如,在编码阶段,可以采用基于客户序列的编码方式,每个解表示为一个客户序列,表示车辆的访问顺序。适应度函数可以定义为路径总成本的倒数或负数,以最小化行驶距离为目标。遗传操作和粒子群操作需要根据问题的约束条件(如车辆容量限制)进行定制,以确保生成的解是可行的。
遗传算法是一种模拟自然选择和遗传学机制的优化算法。在求解CVRP问题时,GA通过编码生成初始种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。
编码方式:采用自然数编码,每个客户的编号代表一个基因,一条路径则由一串基因组成。
初始种群生成:随机生成一定数量的初始路径,构成初始种群。
适应度函数:以适应度函数来衡量每个个体的优劣。在CVRP问题中,适应度函数通常取为总行驶距离的倒数。
选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
变异操作:通过随机交换路径中两个客户的位置来实现变异。
粒子群优化算法是一种模拟鸟群觅食行为的优化算法。在求解CVRP问题时,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。
粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中客户的排列顺序决定。
速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest[j] - x[i][j]),其中v[i][j]表示第i个粒子在第j维上的速度,x[i][j]表示第i个粒子在第j维上的位置,pbest[i][j]表示第i个粒子在第j维上的历史最优位置,gbest[j]表示群体在第j维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:x[i][j] = x[i][j] + v[i][j]。需要注意的是,在更新位置时要保证新生成的路径满足CVRP问题的约束条件。
GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解CVRP问题的效率和质量。具体步骤如下:
初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。
VVV