- 【大模型面试必备】130道大模型问题深度解析,附详细答案,非常详细收藏这一篇就够了!
大模型学习
大模型架构数据库langchain人工智能面试
Attention1、讲讲对Attention的理解?Attention机制是一种在处理时序相关问题的时候常用的技术,*主要用于处理序列数据。*核心思想:在处理序列数据时,网络应该更关注输入中的重要部分,而忽略不重要的部分,它通过学习不同部分的权重,将输入的序列中的重要部分显式地加权,从而使得模型可以更好地关注与输出有关的信息。在序列建模任务中,比如机器翻译、文本摘要、语言理解等,输入序列的不同部
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- 入选 ICML 2025!哈佛医学院等推出全球首个 HIE 领域临床思维图谱模型,神经认知结果预测任务上性能提升 15%
hyperai
在人工智能技术突飞猛进的当下,大型视觉-语言模型(LVLMs)正以惊人的速度重塑多个领域的认知边界。在自然图像与视频分析领域,这类模型依托先进的神经网络架构、海量标注数据集与强大算力支持,已能精准完成物体识别、场景解析等高阶任务。而在自然语言处理领域,LVLMs通过对TB级文本语料的学习,在机器翻译、文本摘要、情感分析等任务上达到专业级水准,其生成的学术摘要甚至能精准提炼医学文献的核心结论。然而当
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 机器翻译综述
唐风绸繆
自然语言处理机器翻译人工智能自然语言处理
机器翻译综述-CSDN博客领域词性标注-CSDN博客一、研究意义机器翻译是自然语言处理和人工智能的重要研究领域,研究如何利用计算机自动地实现不同语言之间的相互转换,也是互联网上常用的服务之一。谷歌翻译、百度翻译和微软必应翻译都提供多种语言之间的在线翻译服务。尽管机器翻译与专业翻译人员在翻译质量上仍存在较大差距,但在一些对翻译质量要求不高的场景中,或在特定的翻译任务中,机器翻译在翻译速度上具有明显优
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- 【深度学习】循环神经网络(RNN):序列建模的奠基者
白熊188
深度学习深度学习rnn人工智能
循环神经网络(RNN):序列建模的奠基者一、算法背景:序列数据的挑战1.1传统神经网络的局限1.2序列数据特性二、算法理论:RNN的核心架构2.1基本RNN结构2.2时间展开原理2.3长短期记忆网络(LSTM)2.4门控循环单元(GRU)三、模型评估:序列建模的评判标准3.1通用评估指标3.2性能对比(PennTreebank数据集)四、应用案例:改变人机交互方式4.1机器翻译(Seq2Seq架构
- 自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
- NLP-文本表示
Carrie_Lei
NLP自然语言处理人工智能
文本表示(TextRepresentation)是自然语言处理(NLP)中的一个关键步骤,它将文本数据转换为机器学习模型可以理解的格式。不同的文本表示方法有助于不同的任务,如文本分类、情感分析、机器翻译等。以下是常见的文本表示方法及其简介:1.词袋模型(BagofWords,BoW)定义:将文本表示为词汇表中所有词的出现频次。忽略词的顺序和语法结构。优点:简单易懂,适用于基础文本分类任务。缺点:高
- BLEU及一些其它的机器翻译评估指标
道风杰韵
VLNM机器翻译人工智能自然语言处理
BLEU(BilingualEvaluationUnderstudy)即双语互译质量评估辅助工具,是一种在机器翻译任务中广泛使用的评估指标。一、原理基于n-gram的匹配BLEU主要基于n-gram(n元语法)的概念。n-gram是指文本中连续的n个单词的序列。例如,在句子“Thecatsatonthemat”中,1-gram(一元语法)有“the”“cat”“sat”“on”“the”“mat”
- 基于Transformer实现机器翻译(日译中)
觉今是昨非
transformer机器翻译深度学习
一、引言在自然语言处理(NLP)领域,机器翻译是一项重要且具有挑战性的任务。近年来,基于Transformer的模型在机器翻译任务中表现出色。本文将详细介绍如何使用PyTorch、Torchtext、SentencePiece以及JupyterNotebook构建一个日语到中文的机器翻译模型。二、原理解释1.Transformer模型的基础概念Transformer模型是由Vaswani等人在20
- 机器翻译模型及评估指标总结
J心流
机器翻译机器翻译人工智能自然语言处理
文章目录0前言1主流开源模型2.1NLLB2.2MMS2.3Seamless2.4Fairseq2.5MarianNMT2.6OpenNMT2.7mRASP2.8T5、mT5、UMT52.9Tensor2Tensor2.10NeMo2评估指标及实现代码2.1BLEU2.2ROUGE2.3METEOR3模型部署总结3.1移动端3.1.1CTranslate23.1.2TensorflowTflite
- Pointer Network
D11PMINDER
deeplearning人工智能自然语言处理深度学习
通俗易懂讲解:PointerNetwork(指针网络)你提到PointerNetwork(指针网络),我们结合非自回归序列生成(NAT)的背景来讲解它的原理、操作和作用。PointerNetwork是一种特殊的神经网络,专门用来解决序列生成中“选择性输出”的问题,比如机器翻译、排序任务等。我们用简单易懂的方式一步步拆解!1.背景:什么是PointerNetwork?PointerNetwork是一
- 机器翻译Task2笔记
triumph159
机器翻译笔记人工智能
模型的概念RNN模型在每个时间步接收一个字的输入,生成隐藏状态和输出,再将隐藏状态与下一个字输入到模型中,重复此过程。GRU(门控循环单元)是RNN的变体,能够有效捕捉长序列语义关联,缓解梯度消失或爆炸现象,其核心结构由更新门和重置门两部分组成。对于数据处理的思路记住我们正常的神经网络是无法直接识别中文或者英文的字符串输入的。所以这一步我们的目标只有一个,那就是将数据变成神经网络可以识别到的数据类
- 机器翻译模型笔记
D11PMINDER
deeplearning机器翻译笔记人工智能
机器翻译学习笔记(简体中文)1.任务概述目标:将英文句子翻译成简体中文。示例:输入:Tomisastudent.输出:汤姆是一个学生。框架:Seq2Seq(序列到序列)模型。2.数据预处理2.1下载数据数据集:TED2020(英文-简体中文对齐的平行语料)。代码:#下载TED2020数据集的压缩文件#-wget命令用于从指定URL下载文件#--O选项指定下载文件的保存路径和名称#-目的:获取训练所
- bitbake手册
power1952
linux
前言本文是bitbake官方文档的翻译。https://docs.yoctoproject.org/bitbake/2.6/index.html一些地方我觉得没必要翻译,以省略号代替。一部分内容用了机器翻译,遇到无法理解处,请参考原始文档。在一些地方插入了我个人的理解。标有“注”的内容是我加的。1Overview见https://docs.yoctoproject.org/bitbake/2.6/
- 模块化设计:构建可扩展的LLM应用架构
AI天才研究院
ChatGPT计算javapythonjavascriptkotlingolang架构人工智能
引言模块化设计与LLM应用架构概述在当今信息技术飞速发展的时代,人工智能(AI)技术的进步尤为引人注目。其中,大型语言模型(LLM,LargeLanguageModel)的应用极大地改变了自然语言处理(NLP,NaturalLanguageProcessing)的格局。LLM的应用不仅仅局限于文本生成、问答系统,还在智能客服、机器翻译、内容审核等领域展现出了强大的能力。然而,随着LLM的规模不断扩
- EMNLP 2017 北京论文报告会笔记
ljtyxl
NLP
16号在北京举办的,邀请了国内部分被录用论文的作者来报告研究成果,整场报告会分为文本摘要及情感分析、机器翻译、信息抽取及自动问答、文本分析及表示学习四个部分。感觉上次的CCF-GAIR参会笔记写的像流水账,这次换一种方式做笔记。分为四个部分,并没有包含分享的所有论文。第一部分写我最喜欢的论文,第二部分总结一些以模型融合为主要方法的论文,第三部分总结一些对模型组件进行微调的论文,第四部分是类似旧瓶装
- Transformer机器翻译模型(代码实现案例)
山山而川_R
NLPtransformer机器翻译深度学习
目标了解有关机器翻译的知识了解seq2seq架构使用Transformer构建机器翻译模型的实现过程1Transformer架构Transformer模型架构分析Transformer模型架构,大范围内包括两部分分别是encoder(编码器)和decoder(解码器),编码器和解码器的内部实现都使用了注意力机制实现,这里它要完成的是一个德文到英文的翻译:Willkommeninpeking→wel
- 【头歌实验】Keras机器翻译实战
纸飞机飞呀飞
头歌实验学习笔记keras机器翻译人工智能
【头歌实验】Keras机器翻译实战第1关:加载原始数据编程要求根据提示,在右侧编辑器补充代码,实现load_data函数,该函数需要加载path所代表的文件中的数据,并将文件中所有的内容按\n分割,转换成一个列表后返回。代码#coding:utf8importosdefload_data(path):'''读取原始语料数据:parampath:文件路径:return:句子列表,如['heisabo
- 自然语言处理之文本摘要:Transformer与文本摘要评价指标
zhubeibei168
自然语言(二)自然语言处理transformereasyui
自然语言处理之文本摘要:Transformer与文本摘要评价指标自然语言处理与文本摘要简介自然语言处理的基本概念自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP技术涵盖了语音识别、语义理解、情感分析、机器翻译、文本摘要等多个方面,其目标是使计算机能够像人类一样处理语言信息,从而在各种应用场景中
- 6个月Python学习计划 Day 6 - 综合实战:学生信息管理系统
蓝婷儿
pythonpython学习java
第一周Day1-Python基础入门&开发环境搭建Day2-条件判断、用户输入、格式化输出Day3-循环语句+range函数Day4-列表&元组基础Day5-字典(dict)与集合(set)今日目标巩固列表、字典、条件、循环等基础知识练习程序结构设计和模块拆解能力完成一个小型终端项目:学生信息管理系统️项目说明该系统具有以下功能:添加学生信息(姓名、年龄、成绩)显示所有学生信息查询指定学生删除学生
- 6个月Python学习计划 Day 8 - Python 函数基础
蓝婷儿
pythonpython学习开发语言
第一周Day1-Python基础入门&开发环境搭建Day2-条件判断、用户输入、格式化输出Day3-循环语句+range函数Day4-列表&元组基础Day5-字典(dict)与集合(set)Day6-综合实战:学生信息管理系统Day7-复盘+测试日今日目标:理解函数的作用掌握自定义函数的语法学会传参(位置参数、默认参数)了解函数的返回值学习内容详解:✅1.什么是函数?函数就是一段可以重复使用的代码
- 6个月Python学习计划 Day 7 - 复盘 + 测试日
蓝婷儿
pythonpython学习java
第一周Day1-Python基础入门&开发环境搭建Day2-条件判断、用户输入、格式化输出Day3-循环语句+range函数Day4-列表&元组基础Day5-字典(dict)与集合(set)Day6-综合实战:学生信息管理系统一周知识回顾(Week1)模块内容关键词Python入门变量、数据类型、输入输出str,int,float,bool,input(),print()控制结构分支语句if-el
- Transformer 架构在自然语言处理和计算机视觉等领域的应用和发展前景
搬砖的阿wei
transformer自然语言处理计算机视觉
Transformer架构在自然语言处理和计算机视觉等领域的应用一、自然语言处理领域的应用机器翻译原理:将源语言句子作为输入,Transformer编码器把句子转换为高维特征表示,解码器再根据这些表示生成目标语言句子。利用自注意力机制学习到源语言和目标语言句子之间的语义关系和语法结构的映射。举例:谷歌的神经机器翻译系统采用Transformer架构后,翻译质量得到了显著提升,译文更加准确、流畅,更
- NLP学习路线图(八):常见算法-线性回归、逻辑回归、决策树
摸鱼许可证
NLP学习路线图自然语言处理nlp
引言:当机器学习遇见自然语言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能皇冠上的明珠,正在深刻改变人机交互的方式。从智能客服到机器翻译,从情感分析到文本生成,NLP技术的突破都建立在坚实的机器学习基础之上。本文将深入剖析机器学习核心算法,揭示这些"传统"方法在NLP领域的独特价值,为开发者构建完整的AI知识体系提供关键路径。第一部分机器学习基础与核心算法1
- GRU在机器翻译中的实际应用案例
AIGC应用创新大全
gru机器翻译深度学习ai
GRU在机器翻译中的实际应用案例:从原理到实战的保姆级解析关键词:GRU(门控循环单元)、机器翻译、编码器-解码器、长序列依赖、神经机器翻译摘要:本文以“GRU在机器翻译中的实际应用”为核心,从生活场景切入,用“快递中转站”“翻译接力赛”等通俗比喻,逐步拆解GRU的核心原理、与机器翻译的结合方式,并用PyTorch实现一个中英短句翻译的实战案例。无论你是刚入门的AI爱好者,还是想深入理解循环神经网
- Transformer大模型实战 针对下游任务进行微调
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
Transformer,微调,下游任务,自然语言处理,预训练模型,迁移学习,计算机视觉1.背景介绍近年来,深度学习在人工智能领域取得了突破性进展,其中Transformer模型凭借其强大的序列建模能力,在自然语言处理(NLP)领域取得了显著成就。BERT、GPT、T5等基于Transformer的预训练模型,在文本分类、机器翻译、问答系统等任务上展现出令人惊叹的性能。然而,这些预训练模型通常在大型
- 【深度学习常用算法】八、深度解析Transformer架构:从理论到PyTorch实现
AI_DL_CODE
人工智能之深度学习深度学习算法transformer人工智能位置编码预训练模型机器翻译
摘要:本文深入探讨Transformer架构的核心设计原理、工程实现与应用场景。作为自然语言处理领域的里程碑式创新,Transformer通过自注意力机制彻底改变了序列建模方式,在机器翻译、文本生成、多模态学习等任务中取得突破性进展。文中详细解析了Transformer的编码器-解码器结构、多头注意力机制、位置编码策略及训练优化方法,并通过PyTorch实现完整的中英文翻译系统。实验表明,在IWS
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen