- 【安装环境】配置MMTracking环境
xuanyu22
安装环境机器学习神经网络深度学习python
版本v0.14.0安装torchnumpy的版本不能太高,否则后面安装时会发生冲突。先安装numpy,因为pytorch的安装会自动配置高版本numpy。condainstallnumpy=1.21.5mmtracking支持的torch版本有限,需要找到合适的condainstallpytorch==1.11.0torchvision==0.12.0cudatoolkit=10.2-cpytor
- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 安装torch报错 raise ReadTimeoutError(self._pool, None, “Read timed out.“) pip._vendor.urllib3.exceptions
待磨的钝刨
pippytorch人工智能
文章目录1.配置cuda的torch环境时报错1.配置命令2.报错bug2.解决方法1.增加下载超时时间:2.尝试使用镜像源:3.检查网络连接:4.分次安装:5.重试安装:6.手动下载.whl文件安装1.配置cuda的torch环境时报错1.配置命令pipinstalltorch==2.0.1torchvision==0.15.2torchaudio==2.0.2--index-urlhttps:
- SAM2跑通(Ubuntu20.04)内含安装多个cuda
好好607
pytorchlinux
参考链接:github链接安装cuda,之前借鉴的方法安装多个cuda补充cuda安装:Asymlinkalreadyexistsat/usr/local/cuda.Updatetothisinstallation?选择no,否则会创建一个软连接覆盖之前那个/usr/local/cudasudogedit~/.bashrc如果按第二个链接安装的cuda,手动改一下版本即可SAM环境安装步骤除了本地
- 使用vllIm部署大语言模型
添砖JAVA的小墨
机器学习
使用vllm部署大语言模型一般需要以下步骤:一、准备工作1.系统要求-操作系统:常见的Linux发行版(如Ubuntu、CentOS)或Windows(通过WSL)。-GPU支持:NVIDIAGPU并安装了适当的驱动程序。-足够的内存和存储空间。2.安装依赖-Python3.8及以上版本。-CUDA工具包(根据GPU型号选择合适的版本)。二、安装vllm1.创建虚拟环境(推荐)-使用Conda:c
- vllm在线推理踩坑记
懂点投资的码农
大语言模型ai语言模型python
最近在《AI大模型全栈工程师》课程里看老师推荐使用vllm部署大模型,优点就不详细介绍了,这里摘抄一段来自于Qwen2上手指南对于它的简单介绍:它易于使用,且具有最先进的服务吞吐量、高效的注意力键值内存管理(通过PagedAttention实现)、连续批处理输入请求、优化的CUDA内核等功能。至于原理就先不看了,直接上手部署,以后再来补理论知识。一、vLLM在线推理在Qwen2的上市指南里介绍了v
- 多版本cuda安装及灵活切换详细教程
Fzc_PCL
CUDALinux记录cudalinux
一、首先介绍下我所使用的环境ubuntu18.04+1080ti二、下载安装包1.cudatoolkit下载①环境选择,想要多版本共存的,尽量选择runfile文件进行安装②有些cudatoolkit下载页面,和我上边的一样,没有对应的安装包下载按钮,BaseInstaller中只给了两行命令,如果运行第一行命令的话,下载会比较慢,我是直接复制wget后边的链接在新网页窗口中打开,会自动弹出下载窗
- Cuda 程序编译报错: fatal error: cusparse.h: No such file or directory
原野寻踪
实践经验cuda
编译cuda程序时发现下列报错:/mnt/xxx/miniconda3/envs/xxx/lib/python3.8/site-packages/torch/include/ATen/cuda/CUDAContext.h:6:10:fatalerror:cusparse.h:Nosuchfileordirectory#include^~~~~~~~~~~~检查发现是选择了错误的Cuda版本。ls/
- 天下苦英伟达久矣!PyTorch官方免CUDA加速推理,Triton时代要来?
诗者才子酒中仙
物联网/互联网/人工智能/其他pytorch人工智能python
在做大语言模型(LLM)的训练、微调和推理时,使用英伟达的GPU和CUDA是常见的做法。在更大的机器学习编程与计算范畴,同样严重依赖CUDA,使用它加速的机器学习模型可以实现更大的性能提升。虽然CUDA在加速计算领域占据主导地位,并成为英伟达重要的护城河之一。但其他一些工作的出现正在向CUDA发起挑战,比如OpenAI推出的Triton,它在可用性、内存开销、AI编译器堆栈构建等方面具有一定的优势
- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- GPU版pytorch安装
普通攻击往后拉
pythontips神经网络基础模型关键点
由于经常重装系统,导致电脑的环境需要经常重新配置,其中尤其是cudatorch比较难以安装,因此记录一下安装GPU版本torch的过程。1)安装CUDAtoolkit这个可以看做是N卡所有cuda计算的基础,一般都会随驱动的更新自动安装,但是不全,仍然需要安装toolkit,并不需要先看已有版本是哪个,反正下载完后会自动覆盖原有的cuda。下载网站两个:国内网站:只能下载最新的toolkit,但是
- 人工智能-GPU版本机器学习、深度学习模型安装
bw876720687
人工智能机器学习深度学习
背景1、在有Nvidia-GPU的情况下模型使用cuda加速计算,但是很有多模型的GPU和CPU版本安装方式不同,如何安装lgb\cat\xgb.2、为了让代码有普适性,如何自适应环境当中的设备进行CPU或者GPU的调整?解决方案问题一:安装GPU版本的LightGBMLightGBM默认不会安装GPU支持版,需要手动编译以启用GPU。以下是在Linux和Windows上编译GPU版本LightG
- python ray分布式_取代 Python 多进程!伯克利开源分布式框架 Ray
weixin_39946313
pythonray分布式
Ray由伯克利开源,是一个用于并行计算和分布式Python开发的开源项目。本文将介绍如何使用Ray轻松构建可从笔记本电脑扩展到大型集群的应用程序。并行和分布式计算是现代应用程序的主要内容。我们需要利用多个核心或多台机器来加速应用程序或大规模运行它们。网络爬虫和搜索所使用的基础设施并不是在某人笔记本电脑上运行的单线程程序,而是相互通信和交互的服务的集合。云计算承诺在所有维度上(内存、计算、存储等)实
- CUDA 编程入门(2):CUDA 调度模型
知识搬运工人
CUDAGPUCUDA
参考:CUDA编程入门(2):CUDA编程模型-知乎(zhihu.com)CUDA调度模型Block调度Block对应的物理硬件概念是SM,也就是说SM负责block中线程的执行,SM会为每个block分配需求的资源,比如寄存器,共享内存等,由于SM自身资源有限,因此它被分配到的block数量也是有限的,这取决于block中线程的资源需求。当所有的SM都饱和之后,剩下的blocks将会被暂时挂起,
- OPENCL之SIMT与SIMD在架构上的主要区别是什么?
糯米宝宝
gpuopencv
SIMT(单指令多线程)与SIMD(单指令多数据)在架构上的主要区别体现在以下几个方面:执行单元的组织方式:SIMD:采用的是多数据流架构,即同一条指令同时作用于多个数据元素。这种架构特别适合于多媒体应用等数据密集型运算。SIMT:采用的是多线程架构,即同一条指令由多个线程并行执行。每个线程可以有不同的分支行为和执行路径,从而实现线程级的并行计算。软件暴露的信息:SIMD:向软件公开SIMD宽度(
- Ubuntu 开机出现 recovering journal 无法进入图形界面解决流程(不通用,自用)
Artintel
学习ubuntu
远程连接进入命令行:rm-rf/etc/X11/xorg.confcp/etc/X11/xorg.conf.failsafe/etc/X11/xorg.confsudoservicelightdmstopsudoapt-getremovenvidia*cdjohn/qudong+cuda9.0\+\cudnn/sudochmoda+xnv.runsudo./nv.run-no-x-check-no
- Python | 使用Joblib模块加快任务处理速度
python收藏家
pythonpython
在本文中,我们将了解如何通过使用Joblib模块在Python中并行执行代码来大幅减少大型代码的执行时间。Joblib模块简介Joblib是一个用于Python的开源库,它提供了一些用于并行计算和内存映射的工具,旨在提高科学计算和数据分析的效率。Python中的Joblib模块特别用于使用Pipelines并行执行任务,而不是一个接一个地顺序执行任务。Joblib模块允许用户通过利用设备中存在的所
- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- pytorch计算网络参数量和Flops
Mr_Lowbee
PyTorchpytorch深度学习人工智能
fromtorchsummaryimportsummarysummary(net,input_size=(3,256,256),batch_size=-1)输出的参数是除以一百万(/1000000)M,fromfvcore.nnimportFlopCountAnalysisinputs=torch.randn(1,3,256,256).cuda()flop_counter=FlopCountAna
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- ONNXRuntime与CUDA版本对应
zy_destiny
部署YOLOonnxruntimeonnX部署cudapython
onnxruntime-gpu版本可以说是一个非常简单易用的框架,因为通常用pytorch训练的模型,在部署时,会首先转换成onnx,而onnxruntime和onnx又是有着同一个爸爸,无疑,在op的支持上肯定是最好的。通常在安装onnxruntime时,需要将其版本与pytorch版本和CUDA版本进行对应,其中ONNXRuntime与CUDA版本对应关系表如下表所示。ONNXRuntimeC
- 【已解决】onnx无法找到CUDA的路径
烟花节
已解决人工智能深度学习pythonpip
报错RuntimeError:D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:857onnxruntime::python::CreateExecutionProviderInstanceCUDA_PATHissetbutCUDAwasntabletobeloaded.Pleaseinstallthecorrectvers
- Window 下 Vim 环境安装踩坑问题汇总及解决方法
yyywxk
#Python模块有关问题vimpythonmambawindows
导航Linux下Mamba及Vim安装问题参看本人之前博客:Mamba环境安装踩坑问题汇总及解决方法Linux下Vmamba安装教程参看本人之前博客:Vmamba安装教程(无需更改base环境中的cuda版本)Windows下VMamba的安装参看本人之前博客:Windows下VMamba安装教程(无需更改base环境中的cuda版本且可加速)Window下Mamba环境教程参看本人之前博客:Wi
- windows11 wsl2 ubuntu20.04安装vision mamba并进行测试
一剑斩蛟龙
人工智能深度学习图像处理计算机视觉python机器学习pytorch
windows11wsl2ubuntu20.04安装visionmamba安装流程使用cifar-100测试安装成功安装流程visionmamba安装了半天才跑通,记录一下流程在wsl上安装cudawgethttps://developer.download.nvidia.cn/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_l
- [Lora][微调] Qwen-VL/Qwen-VL-chat微调问题
翔迅AI
python
@[Lora][微调]Qwen-VL/Qwen-VL-chat微调问题关于Qwen-VL在lora过程中出现的问题总结。模型预训练错误一“erfinv_cuda”notimplementedfor‘BFloat16’RuntimeError:"erfinv_cuda"notimplementedfor'BFloat16'参考github中issue253给出的意见,修改Qwen-VL-Chat/v
- 【并行计算】Strong scaling和weak Scaling
栏杆拍遍看吴钩
pytorch并行计算
可以从这个角度来区分:StrongScaling在扩展时是壮壮的,即使增加负载,也不需要调整机器。WeakScaling在扩展时是弱弱的,如果要增加负载,也要同步增加机器。Strong的目的是为了知道当前的机器所能够提供的最大并行能力。Weak的目的是为了保证当前的负载均衡性一致的情况下比较不同数量机器的并行效果。
- 【Pytorch】cumsum的实现逻辑
栏杆拍遍看吴钩
pytorchpytorch人工智能python
本文只记录cumsum的实现逻辑的CUDA部分,也即底层调用了CUDA的什么实现算子。voidlaunch_cumsum_cuda_kernel(constTensorBase&result,constTensorBase&self,int64_tdim){AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(ScalarType::Half,ScalarType::BFl
- 百度飞桨paddle安装 包括CUDA,cuDNN,opencv的安装
小甲学长
opencv百度paddlepaddle
conda创建新环境这部分代码均在AnacondaPrompt中写,要求已有Anaconda第一步:创建condacreate--nameyourEnvpython=3.6–name:也可以缩写为【-n】,【yourEnv】是新创建的虚拟环境的名字,创建完,可以装anaconda的目录下找到envs/yourEnv目录python=2.7:是python的版本号。也可以指定为【python=3.6
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地