[ML] SVM

支持向量机(support vector machines,SVM)是一种二分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器。SVM还包括核技巧,这使它成为实质上的非线性分类器。

SVM学习方法包括构建由简至繁的模型:线性可分支持向量机、线性支持向量机及非线性支持向量机。当训练数据线性可分时,通过硬间隔最大化,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性可分支持向量机,又称为软间隔支持向量机;当训练数据线性不可分时,通过使用核技巧即软间隔最大化,学习非线性支持向量机。

核函数表示将输入从输入空间映射到特征空间得到的特征向量之间的内积。通过使用核函数可以学习非线性支持向量机,等价于隐式地在高维的特征空间中学习线性支持向量机。这样的方法称为核技巧。

常见的核方法包括:多项式核函数、高斯核函数、字符串核函数。(线性核函数、径向基核函数:高斯)

(感知机利用误分类最小策略,求得分离超平面,不过这时的解有无穷多个。线性可分支持向量机利用间隔最大化求最优分离超平面,这时,解是唯一的。)

你可能感兴趣的:([ML] SVM)