概述
垃圾收集 Garbage Collection 通常被称为GC ,它诞生于1960年的 MIT 的 Lisp 语言,经过半个多世纪,目前已经十分成熟了。jvm 中,程序计数器、虚拟机栈、本地方法栈都是随线程而生随线程而灭,栈帧随着方法的进入和退出做入栈和出栈操作,实现了自动的内存清理,因此,我们的内存垃圾回收主要集中于 java 堆和方法区中,在程序运行期间,这部分内存的分配和使用都是动态的.
如何定位垃圾
- 引用计数(ReferenceCount):每个对象有一个引用计数,新增一个引用是计数加1,引用释放时计数减1,计数为0时即可回收。但是无法解决对象互相循环引用的问题。
- 可达性分析 :从GC Roots开始向下搜索,搜索所走过的路径称为引用链。当一个对象到GC Roots 没有任何引用链相连时,测正面对象是不可用的。不可达对象。
GC Roots 包括- 虚拟机栈应用的对象
- 方法区中类静态属性实体引用的对象。
- 方法区中常量引用的对象。
- 本地方法栈JNI引用的对象。
垃圾收集算法
标记 - 清除算法 (Mark-Sweep)位置不连续 产生碎片 效率偏低(两遍扫描)
特点:位置不连续 产生碎片 效率偏低(两遍扫描)
如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。
复制算法 (Copying)
特点:效率高,浪费空间
“复制”(Copying)的收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,持续复制长生存期的对象则导致效率降低。
标记-压缩算法(Mark-Compact)
特点:没有碎片,效率偏低(两遍扫描,指针需要调整)
复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存
分代收集算法
GC分代的基本假设:绝大部分对象的生命周期都非常短暂,存活时间短。
“分代收集”(Generational Collection)算法,把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。
垃圾收集器
如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现
Serial 收集器
串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。新生代、老年代使用串行回收;新生代复制算法、老年代标记-压缩;垃圾收集的过程中会Stop The World(服务暂停)
参数控制: -XX:+UseSerialGC 串行收集器
ParNew收集器 ParNew收集器其实就是Serial收集器的多线程版本。新生代并行,老年代串行;新生代复制算法、老年代标记-压缩
参数控制:
-XX:+UseParNewGC ParNew收集器
-XX:ParallelGCThreads 限制线程数量
Parallel收集器
Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。可以通过参数来打开自适应调节策略,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量;也可以通过参数控制GC的时间不大于多少毫秒或者比例;新生代复制算法、老年代标记-压缩
参数控制: -XX:+UseParallelGC 使用Parallel收集器+ 老年代串行
Parallel Old 收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供
参数控制: -XX:+UseParallelOldGC 使用Parallel收集器+ 老年代并行
CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。
从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括:
- 初始标记(CMS initial mark)
- 并发标记(CMS concurrent mark)
- 重新标记(CMS remark)
- 并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。老年代收集器(新生代使用ParNew)
优点: 并发收集、低停顿
缺点: 产生大量空间碎片、并发阶段会降低吞吐量
参数控制:
-XX:+UseConcMarkSweepGC 使用CMS收集器
-XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长
-XX:+CMSFullGCsBeforeCompaction 设置进行几次Full GC后,进行一次碎片整理
-XX:ParallelCMSThreads 设定CMS的线程数量(一般情况约等于可用CPU数量)
G1收集器
使用特点:适合多核,大内存服务器使用,大多数情况下可以指定GC暂停时间,并且可以保持较高的吞吐量。
G1是目前技术发展的最前沿成果之一,HotSpot开发团队赋予它的使命是未来可以替换掉JDK1.5中发布的CMS收集器。与CMS收集器相比G1收集器有以下特点:
- 并发收集
- 压缩空闲空间不会延长GC的暂停时间(能够控制GC暂停时间)(复制算法)
- 更容易预测GC暂停时间
- 适用于不需要实现特别高吞吐量的场景
使用G1收集器时,Java堆的内存布局与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔阂了,它们都是一部分(可以不连续)Region的集合。
垃圾收集步骤:
1、初始标记(initial marking):暂停阶段。扫描根集合,标记所有从根集合可直接到达的对象并将它们的字段压入扫描栈(marking stack)中等到后续扫描。G1使用外部的bitmap来记录mark信息,而不使用对象头的mark word里的mark bit。在分代式G1模式中,初始标记阶段借用young GC的暂停,因而没有额外的、单独的暂停阶段。
2、并发标记(concurrent marking):并发阶段。不断从扫描栈取出引用递归扫描整个堆里的对象图。每扫描到一个对象就会对其标记,并将其字段压入扫描栈。重复扫描过程直到扫描栈清空。过程中还会扫描SATB write barrier所记录下的引用。
3、最终标记(final marking,在实现中也叫remarking):暂停阶段。在完成并发标记后,每个Java线程还会有一些剩下的SATB write barrier记录的引用尚未处理。这个阶段就负责把剩下的引用处理完。同时这个阶段也进行弱引用处理(reference processing)。
注意这个暂停与CMS的remark有一个本质上的区别,那就是这个暂停只需要扫描SATB buffer,而CMS的remark需要重新扫描mod-union table里的dirty card外加整个根集合,而此时整个young gen(不管对象死活)都会被当作根集合的一部分,因而CMS remark有可能会非常慢。
4、清理(cleanup):暂停阶段。清点和重置标记状态。这个阶段有点像mark-sweep中的sweep阶段,不过不是在堆上sweep实际对象,而是在marking bitmap里统计每个region被标记为活的对象有多少。这个阶段如果发现完全没有活对象的region就会将其整体回收到可分配region列表中。
基本概念:
CSET: collection set
它记录了GC要收集的Region集合。当CSET中Region的垃圾被回收之后,在CSet中存活的数据会在GC过程中被移动到另一个可用分区,CSet中的分区可以来自Eden空间、survivor空间、或者老年代。CSet会占用不到整个堆空间的1%大小。
CardTable
Card Table则是一种points-out(我引用了谁的对象)的结构,每个Card 覆盖一定范围的Heap(一般为512Bytes)。
YGC的时候,从根上面去查找的时候。A(Y) > B(O) > C(Y),需要扫描整个old区,效率很低。这时候JVM设计了CardTable,如果一个O区Card中有对象指向Y区,就标记这个Card为dirty。remark时候,就只会扫描dirty的对象。cardtable就是记录o区中,是否是dirty对象的一个table。
RSET:Remembered Set
RSet记录了其他Region中的对象引用本Region中对象的关系,属于points-into结构(谁引用了我的对象)。
G1的RSet是在Card Table的基础上实现的:每个Region会记录下别的Region有指向自己的指针,并标记这些指针分别在哪些Card的范围内。 这个RSet其实是一个Hash Table,Key是别的Region的起始地址,Value是一个集合,里面的元素是Card Table的Index。
三色标记法
- 白色:未被标记的对象
- 灰色:自身被标记,成员变量未被标记
- 黑色:自身和成员变量均已标记完成
产生漏标:
- 标记进行时增加了一个白到黑的引用,如果不重新对黑色进行处理,则会漏标
-
标记进行时删除了灰对象到白对象的引用,那么这个白对象有可能被漏标
image.png
如何解决漏标:打破上述两个条件之一即可
- incremental update -- 增量更新,关注引用的增加,把黑色重新标记为灰色,下次重新扫描属性 - CMS
- SATB snapshot at the beginning - 关注引用的删除 当 B -> D 消失时,要把这个引用推到GC的堆栈,保证D还能被GC扫描到 - G1
为什么G1 用 SATB ?
灰色 ——> 白色引用消失时,如果没有黑色指向白色引用会被push到堆栈
下次扫描时拿到这个引用,由于有RSet的存在,不需要扫描整个堆去查找指向白色的引用,效率比较高
SATB配合RSet ,浑然天成。