- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- 多模态AI Agent技术栈解析:视觉-语言-决策融合的算法原理与实践
多模态AIAgent技术栈解析:视觉-语言-决策融合的算法原理与实践嗨,我是IRpickstars!总有一行代码,能点亮万千星辰。在技术的宇宙中,我愿做永不停歇的探索者。✨用代码丈量世界,用算法解码未来。我是摘星人,也是造梦者。每一次编译都是新的征程,每一个bug都是未解的谜题。让我们携手,在0和1的星河中,书写属于开发者的浪漫诗篇。目录编辑多模态AIAgent技术栈解析:视觉-语言-决策融合的算
- 【教程4>第7章>第26节】基于FPGA的RS(204,188)译码verilog实现10——RS译码模块整体实现与性能仿真评估
fpga和matlab
#第7章·通信—信道编译码fpga开发RSverilogRS译码教程4
本课程学习成果预览目录1.软件版本2.RS译码模块整体实现介绍2.1伴随式计算(SyndromeCalculation)2.2擦除位置处理(ErasureHandling)2.3多项式乘法(PolynomialMultiplication)2.4欧几里得算法(EuclideanAlgorithm)2.5钱搜索(ChienSearch)3.RS译码模块整体FPGA实现4.RS译码仿真测试5.视频操作
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- 字节跳动抖音电商2-2 算法 20220331
史上最强的弟子
字节面试算法算法字节
题目:////n==nums.length//1<=n<=104//0<=nums[i]<=n//nums中的所有数字都独一无二//给定一个包含[0,n]中n个数的数组nums,找出[0,n]这个范围内没有出现在数组中的那个数。//输入:nums=[3,0,1]//输出:2//解释:n=3,因为有3个数字,所以所有的数字都在范围[0,3]内。2是丢失的数字,因为它没有出现在nums中。packag
- 解锁数据潜能——亮数据Web数据集,精准、全面、即时
程序猿追
其他领域嵌入式效率性能优化科技计算机外设
解锁数据潜能——亮数据Web数据集,精准、全面、即时在数据驱动的时代,获取高质量的网络数据成为许多企业与研究机构的核心需求。亮数据推出的Web数据集产品,试图通过技术手段解决传统数据采集中的痛点,为使用者提供更高效的数据支持方案。该数据集的核心优势体现在三个维度:数据精准度、覆盖全面性和更新即时性。在精准度方面,通过动态IP网络与智能解析算法的结合,有效降低了传统爬虫常遇到的反爬干扰,使获取的数据
- AI+大数据:社交网络分析在金融风控中的完整流程
AI智能应用
AI大模型应用入门实战与进阶人工智能大数据ai
AI+大数据:社交网络分析在金融风控中的完整流程关键词:AI、大数据、社交网络分析、金融风控、完整流程摘要:本文详细讲述了在金融风控领域运用AI和大数据进行社交网络分析的完整流程。通过通俗易懂的语言,从背景知识入手,解释核心概念,阐述算法原理,分享项目实战经验,探讨实际应用场景,推荐相关工具资源,展望未来发展趋势与挑战,旨在让读者全面了解这一复杂技术在金融风控中的应用。背景介绍目的和范围我们的目的
- AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
格图素书
人工智能深度学习
目录前言算法原理摄像头在自动驾驶中的作用与意义分类按通信协议区分按不同感光芯片按像元排列方式摄像头核心关键指标多传感器融合在自动驾驶中的应用▲不同自动驾驶等级的传感器配置▲L2级别▲L2+/3级别▲L4/5级别摄像头的种类与应用车载智能前视像头关键参数如何选择摄像头全车摄像头布置及功能前视摄像头环视摄像头后视摄像头侧视摄像头内置/外置后视摄像头雷达的种类与应用摄像头与雷达的数量配置产业与行业现状摄
- 计算机网络深度解析:HTTPS协议架构与安全机制全揭秘(2025演进版)
知识产权13937636601
计算机计算机网络https架构
摘要2025年全球HTTPS流量占比达99.7%(W3Techs数据),本文系统剖析HTTPS协议的技术演进与安全机制。从加密算法体系(国密SM2/3/4vsRSA/ECC)、TLS1.3协议超时优化、后量子密码迁移路径三大突破切入,结合OpenSSL3.2、BoringSSL实战案例,详解协议握手时延降低80%的底层逻辑,并首次公开混合加密、证书透明度、密钥交换攻击防御等关键工程部署策略,为开发
- JVM GC学习记录
不会吃萝卜的兔子
JVMGCjvm学习javaGC
垃圾标记算法:引用计数:解决不了垃圾对象循环引用问题。root扫描(可达性分析):从根对象(线程、main函数、静态变量、常量)扫描。三色标记:黑:其下所有子树,引用均被标记完成,是存活的最终状态。灰:其下所有子树,但引用的对象尚未完全检查,是存活的过渡状态。白:对象未被标记,默认初始状态,标记结束后仍为白色的对象将被回收。标记时会STW扫描根节点,然后标记线程与业务线程并行存在;会产生情况2,业
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?
Echo_Wish
Python!实战!python自动驾驶开发语言
Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?今天咱们聊聊一个非常火但又特别实用的技术方向——自动驾驶仿真。具体点,就是用Python怎么玩转微软出品的自动驾驶仿真平台AirSim。别看名字叫AirSim,实际上它不仅支持无人机,还对自动驾驶汽车的模拟提供了强大支持。自动驾驶不是科幻,背后需要海量数据、复杂算法和大量实车测试。而现实世界测试成本高、风险大,怎么
- .net密码加密解密AES
步、步、为营
网络服务器运维.net
.NET中使用AES进行密码加密解密技术解析在当今数字化的时代,数据安全至关重要。密码作为保护个人和敏感信息的第一道防线,其加密和解密的安全性显得尤为重要。AES(AdvancedEncryptionStandard)作为一种广泛使用的对称加密算法,在.NET中也有着很好的支持。本文将深入探讨在.NET中如何使用AES算法进行密码的加密和解密。什么是AES算法AES,即高级加密标准,它是美国联邦政
- 【随机数真的是随机数吗?】
¥-oriented
其他
在计算机科学中,随机数是一个非常有趣且复杂的话题。我们常常在各种应用程序中看到随机数的应用,比如游戏、加密、统计模拟等。然而,许多人可能并不清楚计算机生成的随机数到底有多“随机”。本文将详细解释程序中的随机数,探讨其生成机制以及不同类型的随机数。伪随机数与真随机数首先,我们需要明确两个关键概念:伪随机数和真随机数。伪随机数(PseudorandomNumbers):伪随机数是由计算机算法生成的数字
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- LeetCode 热题 100 - 贪心算法 - 买卖股票的最佳时机 - javascript
Jxxli
LeetCodehot100leetcode算法贪心算法javascript
题目给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。示例1:输入:[7,1,5,3,6,4]输出:5解释:在第2天(股票价格=1)的时候买入,在第5天(股票价格=6)的时候卖出,
- 【算法系列】买卖股票的最佳时机【JS代码】
DTcode7
算法系列#前端基础入门三大核心之JS算法javascript最佳时机
【算法系列】买卖股票的最佳时机【JS代码】问题描述基本概念和作用说明解决方案暴力解法一次遍历法代码示例总结与讨论在前端开发中,虽然我们主要关注的是构建用户界面和交互逻辑,但掌握一些基本的算法和数据结构知识也是非常有用的。今天,我们就来探讨一个经典的问题:“买卖股票的最佳时机”。这个问题看似与前端开发无关,但实际上,它背后的算法思想对于优化我们的程序和解决问题有着极大的帮助。问题描述假设你有一个数组
- 买卖股票的最佳时机--js 算法
stoneSkySpace
算法javascript数据结构
一、买卖股票的最佳时机给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0;贪心算法:每次发现更低价格立即更新买入点(minPrice)每次发现更高利润立即更新卖出收益(maxProf
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- CppCon 2018 学习:A Little Order! Delving into the STL sorting algorithms
虾球xz
CppCon学习c++排序算法
记录一下一个编译器加密的算法#include#include#include#include#include#include#includenamespacedetail{//编译期伪随机key:每个字符对应不同keytemplateconstexprstd::uint8_tkey8(){returnstatic_cast((N*31+57)^0xAA);}}//namespacedetail//
- 使用c++编写一段人脸识别眨眼检测的代码
语嫣凝冰
c++opencv计算机视觉图像处理开发语言
我可以给你一些大致的步骤:使用摄像头或图像文件获取视频帧。使用人脸检测算法检测视频帧中的人脸。对检测到的人脸进行眼睛检测。判断眼睛是否闭合,如果是则认为该人在眨眼。以下是一段使用OpenCV库编写的C代码示例:```#include#include#include#includeusingnamespacestd;usingnamespacecv;intmain(){//使用摄像头获取视频帧Vid
- 欧盟AI法案、中国《生成式AI管理办法》规范数据隐私与算法歧视
DK_Allen
大模型人工智能算法
一、全球AI治理框架:双轨并行1.欧盟《AI法案》(2025全面生效)风险等级监管要求典型场景不可接受风险全面禁止社会评分系统、实时生物识别(公共场所)高风险强制注册+第三方评估+人工监督医疗诊断、关键基础设施管理有限风险透明度披露(AI生成内容标注)聊天机器人、深度伪造最小风险无限制垃圾邮件过滤、游戏AI处罚机制:最高罚金≈全球营收6%(或3000万欧元,取较高者)典型判例:ClearviewA
- 数据库领域数据仓库的星型模型与雪花模型对比
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库数据仓库ai
数据库领域数据仓库的星型模型与雪花模型对比关键词:数据仓库、星型模型、雪花模型、数据建模、对比分析摘要:本文深入探讨了数据库领域数据仓库中的星型模型与雪花模型。首先介绍了数据仓库建模的背景知识,包括目的、预期读者和文档结构等。接着详细阐述了星型模型和雪花模型的核心概念、联系以及各自的架构特点,并通过Mermaid流程图进行直观展示。然后对两种模型的核心算法原理展开分析,结合Python源代码进行说
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- AWS WebRTC: 判断viewer端拉流是否稳定的算法
Jasper张
AWSWebRTCwebrtcaws服务器linux
在使用sdk-cviewer端进行拉流的过程中,viewer端拉取的是视频帧和音频帧,不会在播放器中播放,所以要根据收到的流来判断拉流过程是否稳定流畅。我这边采用的算法是:依据相邻帧之间的时间间隔是否落在期望值的±20%范围内。音频帧、视频帧的日志打印如下:07:19:26.263VERBOSEsampleAudioFrameHandler():AudioFramereceived.TrackId
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)
吃兔子的大脑腐
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于改进粒子群算法的混合储能系统容量优化研究一、混合储能系统容量优化的背景与挑战1.混合储能系统的定义与组成2.容量优化的核心目标3.优化面临的挑战二、传统粒子群算法的局限性及其改进策略1.传统PSO的缺陷2.改进粒子群算法的核心方法三、改进PSO在HESS容量
- 归并排序详解
创建两个临时数组存储待合并的子数组使用双指针法依次比较两个子数组的元素将较小的元素放入原数组的对应位置处理剩余未合并的元素前言1.算法概述归并排序是一种采用分治法(DivideandConquer)策略的排序算法,由约翰·冯·诺伊曼在1945年提出。它的核心思想是将一个大问题分解成若干个小问题,递归解决小问题后,再将结果合并起来。分治策略分解:将当前区间一分为二解决:递归地对两个子区间进行排序合并
- AI实践:智能工单系统的技术逻辑与应用
合力亿捷-小亿
人工智能机器学习
在当今数字化浪潮下,智能工单系统正逐渐成为企业服务管理的核心利器。智能工单系统,是依托前沿技术,将传统工单流程智能化、自动化的一套体系,它贯穿于企业服务的各个环节,从客户需求提交,到任务分配、进度跟踪,再到问题解决反馈,全方位覆盖。在企业服务管理中,其扮演着关键角色。一方面,它能极大提高服务效率,通过智能算法快速精准地将工单派发给最合适的人员,减少流转时间;另一方面,优化客户体验,客户能实时了解工
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s