CLIP is Also an Efficient Segmenter

表1

CLIP is Also an Efficient Segmenter_第1张图片
复现结果–Seed:70.7245673447014,dCRF:74.85437742935268
误差小于0.5个点,可以接受

表4

CLIP is Also an Efficient Segmenter_第2张图片
复现结果–训练300轮,Val:58.76741354153312,Test:59.18210

结论和配置

1、sharpness can serve as convenient guidance for prompt choice, and only image-level labels are needed.
2、Finally select “a clean origami {}.” as prompt,merge synonyms at the sentence level.
3、In this paper, leverage the ViT-based CLIP model.
4、A parameter λ is used to binarize the CAM,set λ to 0.4 for VOC.
5、Hyper-parameter Selection for µ in CGL:set µ to 0.95 in experiments.

说明

label[confidence < 0.95] = 255 #隐式执行CGL

感想

VOC全部复现完成,第一次啊!

你可能感兴趣的:(分割,算法,深度学习,人工智能,机器学习,神经网络)