2022.10.30 复现TPH-YOLOv5
2022.10.31 完成替换backbone为Ghostnet
2022.11.02 完成替换backbone为Shufflenetv2
2022.11.10 完成EagleEye对YOLOv5系列剪枝支持
2022.11.14 完成MQBench对YOLOv5系列量化支持
2022.11.16 完成替换backbone为EfficientNetLite-0
2022.11.26 完成替换backbone为PP-LCNet-1x
2022.12.12 完成SwinTrans-YOLOv5(C3STR)
2022.12.15 完成Slimming对YOLOv5系列剪枝支持
pip install -r requirements.txt
Train on Visdrone DataSet (Input size is 608)
No. | Model | mAP | mAP@50 | Parameters(M) | GFLOPs |
---|---|---|---|---|---|
1 | YOLOv5n | 13.0 | 26.20 | 1.78 | 4.2 |
2 | YOLOv5s | 18.4 | 34.00 | 7.05 | 15.9 |
3 | YOLOv5m | 21.6 | 37.80 | 20.91 | 48.2 |
4 | YOLOv5l | 23.2 | 39.70 | 46.19 | 108.1 |
5 | YOLOv5x | 24.3 | 40.80 | 86.28 | 204.4 |
Train on Visdrone DataSet (6-7 size is 640,8 size is 1536)
No. | Model | mAP | mAP@50 | Parameters(M) | GFLOPs |
---|---|---|---|---|---|
6 | YOLOv5xP2 | 30.0 | 49.29 | 90.96 | 314.2 |
7 | YOLOv5xP2 CBAM | 30.1 | 49.40 | 91.31 | 315.1 |
8 | YOLOv5x-TPH | 40.7 | 63.00 | 112.97 | 270.8 |
nohup python train.py --data VisDrone.yaml --weights yolov5n.pt --cfg models/yolov5n.yaml --epochs 300 --batch-size 8 --img 608 --device 0,1 --sync-bn >> yolov5n.txt &
P2 Head、CBAM、TPH、BiFPN、SPP
1、TransBlock的数量会根据YOLO规模的不同而改变,标准结构作用于YOLOv5m
2、当YOLOv5x为主体与标准结构的区别是:(1)首先去掉14和19的CBAM模块(2)降低与P2关联的通道数(128)(3)在输出头之前会添加SPP模块,注意SPP的kernel随着P的像素减小而减小(4)在CBAM之后进行输出(5)只保留backbone以及最后一层输出的TransBlock(6)采用BiFPN作为neck
3、更改不同Loss分支的权重:如下图,当训练集的分类与置信度损失还在下降时,验证集的分类与置信度损失开始反弹,说明出现了过拟合,需要降低这两个任务的权重
消融实验如下:
box | cls | obj | acc |
---|---|---|---|
0.05 | 0.5 | 1.0 | 37.90 |
0.05 | 0.3 | 0.7 | 38.00 |
0.05 | 0.2 | 0.4 | 37.5 |
pip install timm
python train.py --data VisDrone.yaml --weights yolov5x.pt --cfg models/accModels/yolov5xP2CBAM-Swin-BiFPN-SPP.yaml --hyp data/hyps/hyp.visdrone.yaml --epochs 60 --batch-size 4 --img 1536 --nohalf
(1)Window size由7替换为检测任务常用分辨率的公约数8
(2)create_mask封装为函数,由在init函数执行变为在forward函数执行
(3)若分辨率小于window size或不是其公倍数时,在其右侧和底部Padding
debug:在计算完之后需要反padding回去,否则与cv2支路的img_size无法对齐
(4)forward函数前后对输入输出reshape
(5)验证C3STR时,需要手动关闭默认模型在half精度下验证(–nohalf)
Train on Visdrone DataSet (1 size is 608,2-6 size is 640)
No | Model | mAP | mAP@50 | Parameters(M) | GFLOPs | TrainCost(h) | Memory Cost(G) | PT File | FPS@CPU |
---|---|---|---|---|---|---|---|---|---|
1 | YOLOv5l | 23.2 | 39.7 | 46.19 | 108.1 | ||||
2 | YOLOv5l-GhostNet | 18.4 | 33.8 | 24.27 | 42.4 | 27.44 | 4.97 | PekingUni Cloud | |
3 | YOLOv5l-ShuffleNetV2 | 16.48 | 31.1 | 21.27 | 40.5 | 10.98 | 2.41 | PekingUni Cloud | |
4 | YOLOv5l-MobileNetv3Small | 16.55 | 31.2 | 20.38 | 38.4 | 10.19 | 5.30 | PekingUni Cloud | |
5 | YOLOv5l-EfficientNetLite0 | 19.12 | 35 | 23.01 | 43.9 | 13.94 | 2.04 | PekingUni Cloud | |
6 | YOLOv5l-PP-LCNet | 17.63 | 32.8 | 21.64 | 41.7 | 18.52 | 1.66 | PekingUni Cloud |
(1)为保持一致性,下采样的DW的kernel_size均等于3
(2)neck部分与head部分沿用YOLOv5l原结构
(3)中间通道人为设定(expand)
(1)Focus Layer不利于芯片部署,频繁的slice操作会让缓存占用严重
(2)避免多次使用C3 Leyer以及高通道的C3 Layer(违背G1与G3准则)
(3)中间通道不变
(1)原文结构,部分使用Hard-Swish激活函数以及SE模块
(2)Neck与head部分嫁接YOLOv5l原结构
(3)中间通道人为设定(expand)
(1)使用Lite0结构,且不使用SE模块
(2)针对dropout_connect_rate,手动赋值(随着idx_stage变大而变大)
(3)中间通道一律*6(expand)
(1)使用PP-LCNet-1x结构,在网络末端使用SE以及5*5卷积核
(2)SeBlock压缩维度为原1/16
(3)中间通道不变
Model | mAP | mAP@50 | Parameters(M) | GFLOPs | FPS@CPU |
---|---|---|---|---|---|
YOLOv5s | 18.4 | 34 | 7.05 | 15.9 | |
YOLOv5n | 13 | 26.2 | 1.78 | 4.2 | |
[email protected] | 14.3 | 27.9 | 4.59 | 9.6 |
(1)基于YOLOv5块状结构设计,对Conv、C3、SPP(F)模块进行剪枝,具体来说有以下:
(2)八倍通道剪枝(outchannel = 8*n)
(3)ShortCut、concat皆合并剪枝
EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
基于搜索的通道剪枝方法,核心思想是随机搜索到大量符合目标约束的子网,然后快速更新校准BN层的均值与方差参数,并在验证集上测试校准后全部子网的精度。精度最高的子网拥有最好的架构,经微调恢复后能达到较高的精度。
python train.py --data data/VisDrone.yaml --imgsz 640 --weights yolov5s.pt --cfg models/prunModels/yolov5s-pruning.yaml --device 0
(注意训练其他模型,参考/prunModels/yolov5s-pruning.yaml进行修改,目前已支持v6架构)
python pruneEagleEye.py --weights path_to_trained_yolov5_model --cfg models/prunModels/yolov5s-pruning.yaml --data data/VisDrone.yaml --path path_to_pruned_yolov5_yaml --max_iter maximum number of arch search --remain_ratio the whole FLOPs remain ratio --delta 0.02
python train.py --data data/VisDrone.yaml --imgsz 640 --weights path_to_Eaglepruned_yolov5_model --cfg path_to_pruned_yolov5_yaml --device 0
Learning Efficient Convolutional Networks through Network Slimming
python train.py --data data/VisDrone.yaml --imgsz 640 --weights yolov5s.pt --cfg models/prunModels/yolov5s-pruning.yaml --device 0 --sparse
(注意训练其他模型,参考/prunModels/yolov5s-pruning.yaml进行修改,目前已支持v6架构)
python pruneSlim.py --weights path_to_sparsed_yolov5_model --cfg models/prunModels/yolov5s-pruning.yaml --data data/VisDrone.yaml --path path_to_pruned_yolov5_yaml --global_percent 0.6 --device 3
python train.py --data data/VisDrone.yaml --imgsz 640 --weights path_to_Slimpruned_yolov5_model --cfg path_to_pruned_yolov5_yaml --device 0
MQBench是实际硬件部署下评估量化算法的框架,进行各种适合于硬件部署的量化训练(QAT)
由于MQBench目前还在不断更新,选择0.0.2稳定版本作为本仓库的量化库。
git clone https://github.com/ZLkanyo009/MQBench.git
cd MQBench
python setup.py build
python setup.py install
训练脚本实例:
python train.py --data VisDrone.yaml --weights yolov5n.pt --cfg models/yolov5n.yaml --epochs 300 --batch-size 8 --img 608 --nosave --device 0,1 --sync-bn --quantize --BackendType NNIE
目前已支持TensorRT及NCNN部署,详见deploy