此文章只是记录使用,以便后续查看,不作为教程,刚接触,可能有错误
mydata
文件夹,在此文件夹下新建images
和labels
文件夹目录树如下:
├───mydata
│ ├───images
│ └───labels
datasets/defect(随机,但后面路径要一致)
文件夹,在此文件夹下新建images
和labels
文件夹,还需新建的文件夹目录树如下:
├───datasets
│ └───defect
│ ├───images
│ │ ├───test
│ │ ├───train
│ │ └───val
│ └───labels
│ ├───test
│ ├───train
│ └───val
data.py
# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
# 原始路径
image_original_path = "./mydata/images/"
label_original_path = "./mydata/labels/"
cur_path = os.getcwd()
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/defect/images/train/").replace(os.sep, "/")
train_label_path = os.path.join(cur_path, "datasets/defect/labels/train/").replace(os.sep, "/")
# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/defect/images/val/").replace(os.sep, "/")
val_label_path = os.path.join(cur_path, "datasets/defect/labels/val/").replace(os.sep, "/")
# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/defect/images/test/").replace(os.sep, "/")
test_label_path = os.path.join(cur_path, "datasets/defect/labels/test/").replace(os.sep, "/")
# 训练集目录
list_train = os.path.join(cur_path, "datasets/defect/train.txt").replace(os.sep, "/")
list_val = os.path.join(cur_path, "datasets/defect/val.txt").replace(os.sep, "/")
list_test = os.path.join(cur_path, "datasets/defect/test.txt").replace(os.sep, "/")
train_percent = 0.6
val_percent = 0.2
test_percent = 0.2
def del_file(path):
for i in os.listdir(path):
file_data = path + "\\" + i
os.remove(file_data)
def mkdir():
if not os.path.exists(train_image_path):
os.makedirs(train_image_path)
else:
del_file(train_image_path)
if not os.path.exists(train_label_path):
os.makedirs(train_label_path)
else:
del_file(train_label_path)
if not os.path.exists(val_image_path):
os.makedirs(val_image_path)
else:
del_file(val_image_path)
if not os.path.exists(val_label_path):
os.makedirs(val_label_path)
else:
del_file(val_label_path)
if not os.path.exists(test_image_path):
os.makedirs(test_image_path)
else:
del_file(test_image_path)
if not os.path.exists(test_label_path):
os.makedirs(test_label_path)
else:
del_file(test_label_path)
def clearfile():
if os.path.exists(list_train):
os.remove(list_train)
if os.path.exists(list_val):
os.remove(list_val)
if os.path.exists(list_test):
os.remove(list_test)
def main():
mkdir()
clearfile()
file_train = open(list_train, 'w')
file_val = open(list_val, 'w')
file_test = open(list_test, 'w')
total_txt = os.listdir(label_original_path)
num_txt = len(total_txt)
list_all_txt = range(num_txt)
num_train = int(num_txt * train_percent)
num_val = int(num_txt * val_percent)
num_test = num_txt - num_train - num_val
train = random.sample(list_all_txt, num_train)
# train从list_all_txt取出num_train个元素
# 所以list_all_txt列表只剩下了这些元素
val_test = [i for i in list_all_txt if not i in train]
# 再从val_test取出num_val个元素,val_test剩下的元素就是test
val = random.sample(val_test, num_val)
print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
for i in list_all_txt:
name = total_txt[i][:-4]
srcImage = image_original_path + name + '.png'
srcLabel = label_original_path + name + ".txt"
if i in train:
dst_train_Image = train_image_path + name + '.png'
dst_train_Label = train_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_train_Image)
shutil.copyfile(srcLabel, dst_train_Label)
file_train.write(dst_train_Image + '\n')
elif i in val:
dst_val_Image = val_image_path + name + '.png'
dst_val_Label = val_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_val_Image)
shutil.copyfile(srcLabel, dst_val_Label)
file_val.write(dst_val_Image + '\n')
else:
dst_test_Image = test_image_path + name + '.png'
dst_test_Label = test_label_path + name + '.txt'
shutil.copyfile(srcImage, dst_test_Image)
shutil.copyfile(srcLabel, dst_test_Label)
file_test.write(dst_test_Image + '\n')
file_train.close()
file_val.close()
file_test.close()
if __name__ == "__main__":
main()
执行代码。
注意:根据图片的后缀不同,修改代码中.png,根据路径不同修改路径
至此,数据集准备完成。
# YOLOv5 by Ultralytics, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: python train.py --data coco.yaml
# parent
# ├── yolov5
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: E:\1_Work\0802\yolov5-master\datasets\defect # dataset root dir
train: images/train # train images (relative to 'path') 118287 images
val: images/val # val images (relative to 'path') 5000 images
test: images/test # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
nc: 3
names: ["piaochong", "qicao", "changchong"]
注意:修改对应的path,train,val,test路径
nc为标记的类别数量
names为类别名称,在之前的classes.txt中复制
yolov5s.yaml
文件重命名为yolov5s_test.yaml,修改nc类别数量# YOLOv5 by Ultralytics, AGPL-3.0 license
# Parameters
nc: 3 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
修改项 | 值 | 解释 |
---|---|---|
--weights | default=ROOT / ‘yolov5s.pt’ | 预训练权重,在官方Github下载 |
--cfg | default=‘models/yolov5s_test.yaml’ | 加载模型,之前复制修改的文件 |
--data | default=ROOT / ‘data/my.yaml’ | 配置文件 |
--epochs | default=2 | 训练批次 |
--batch-size | default=2 | 每批次的输入数据量 |
修改完成之后运行即可开始训练。
修改detect.py文件:
修改项 | 值 | 解释 |
---|---|---|
--weights | default=ROOT / ‘best.pt’ | 为训练完成后在runs/train/exp/weights下的best.pt文件 |
--source | default=ROOT / ‘datasets/defect/images/test’ | 测试数据目录 |
执行文件即可
结果在yolov5-master/runs/detect/exp下。
注意:如果生成的图片没有框,可以降低置信度排查错误,即detect.py文件中的–conf-thres,–iou-thres。