Abstract
Symmetry breaking is a fundamental concept that prevails in many branches of physics
Access options
Subscription info for Chinese customers
We have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
Fig. 1: Schematic illustration of amorphous ferrimagnets and the experimental set-up for DMI measurements.
Fig. 2: Thickness dependence of DMI in SiN/GdFeCo/SiN samples.
Fig. 3: Characteristics of GdFeCo films through STEM and EELS.
Fig. 4: Tight-binding model calculation of the DMI energy for TM/RE bilayers with a composition gradient.
Fig. 5: Thickness dependence of DMI in SiN/GdFeCo/SiN, SiN/GdFeCo/Pt and SiN/GdFeCo/Cu samples.
References
1.
Anderson, P. W. More is different. Science 177, 393–396 (1972).
2.
Siegel, J. S. Biochemistry: single-handed cooperation. Nature 409, 777–778 (2001).
3.
Ellis, J. Particle physics: antimatter matters. Nature 424, 631–634 (2003).
4.
Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).
5.
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
6.
Je, S.-G. et al. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 214401 (2013).
7.
Cho, J. et al. Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015).
8.
Nembach, H. T., Shaw, J. M., Weiler, M., Jué, E. & Silva, T. J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015).
9.
Pizzini, S. et al. Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures. Phys. Rev. Lett. 113, 047203 (2014).
10.
Yoshimura, Y. et al. Soliton-like magnetic domain wall motion induced by the interfacial Dzyaloshinskii–Moriya interaction. Nat. Phys. 12, 157–161 (2016).
11.
Kim, D.-H., Kim, D.-Y., Yoo, S.-C., Min, B.-C. & Choe, S.-B. Universality of Dzyaloshinskii–Moriya interaction effect over domain-wall creep and flow regimes. Phys. Rev. B 99, 134401 (2019).
12.
Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8, 527–533 (2013).
13.
Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).
14.
Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).
15.
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
16.
Boulle., O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).
17.
Moon, K.-W. et al. Magnetic bubblecade memory based on chiral domain walls. Sci. Rep. 5, 9166 (2015).
18.
Dzialoshinskii, I. E. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).
19.
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
20.
Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).
21.
Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
22.
Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006).
23.
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
24.
Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).
25.
Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).
26.
Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).
27.
Tono, T. et al. Chiral magnetic domain wall in ferrimagnetic GdFeCo wires. Appl. Phys. Express 8, 073001 (2015).
28.
Ostler, T. A. et al. Crystallographically amorphous ferrimagnetic alloys: comparing a localized atomistic spin model with experiments. Phys. Rev. B 84, 024407 (2011).
29.
Kim, S. et al. Magnetic droplet nucleation with a homochiral Néel domain wall. Phys. Rev. B 95, 220402(R) (2017).
30.
Harris, V. G., Aylesworth, K. D., Das, B. N., Elam, W. T. & Koon, N. C. Structural origins of magnetic anisotropy in sputtered amorphous Tb–Fe films. Phys. Rev. Lett. 69, 1939 (1992).
31.
Hufnagel, T. C., Brennan, S., Zschack, P. & Clemens, B. M. Structural anisotropy in amorphous Fe–Tb thin films. Phys. Rev. B 53, 12024 (1996).
32.
Haltz, E. et al. Deviations from bulk behavior in TbFe(Co) thin films: interfaces contribution in the biased composition. Phys. Rev. Mater. 2, 104410 (2018).
33.
Kashid, V. et al. Dzyaloshinskii–Moriya interaction and chiral magnetism in 3d–5d zigzag chains: tight-binding model and ab initio calculations. Phys. Rev. B 90, 054412 (2014).Acknowledgements
This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant nos 15H05702, 26870300, 26870304, 26103002, 26103004, 25220604 and 2604316), the Collaborative Research Program of the Institute for Chemical Research, Kyoto University, and the R & D project for ICT Key Technology of MEXT from the JSPS. This work was partly supported by The Cooperative Research Project Program of the Research Institute of Electrical Communication, Tohoku University. D.-H.K. was supported as an Overseas Researcher under a Postdoctoral Fellowship of JSPS (grant no. P16314). K.-J.L. was supported by the National Research Foundation of Korea (NRF-2017R1A2B2006119), the Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02 and the Korea Institute of Science and Technology (KIST) Institutional Program (project no. 2V05750). D.-Y.K. and S.-B.C. were supported by the Samsung Science & Technology Foundation (SSTF-BA1802-07) and the National Research Foundations of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (2015M3D1A1070465). D.-Y.K. was supported by the KIST institutional program (grant no. 2E29410) and the National Research Council of Science & Technology (grant no. CAP-16-01-KIST) funded by the Korea government (MSIT). S.K. was supported by the Creative Materials Discovery Program (2018M3D1A1089406) and the Basic Research Laboratory Program (NRF-2018R1A4A1020696) through the NRF.Author information
AffiliationsInstitute for Chemical Research, Kyoto University, Kyoto, Japan
Duck-Ho Kim, Mitsutaka Haruta, Tomoe Nishimura, Takaya Okuno, Yuushou Hirata, Wooseung Ham, Sanghoon Kim, Hiroki Kurata, Yoichi Shiota, Takahiro Moriyama & Teruo Ono
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
Hye-Won Ko, Hyeon-Jong Park & Kyung-Jin Lee
Department of Materials Science & Engineering, Korea University, Seoul, Republic of Korea
Gyungchoon Go & Kyung-Jin Lee
Department of Physics and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
Dae-Yun Kim & Sug-Bong Choe
Center for Spintronics, Korea Institute of Science and Technology, Seoul, Republic of Korea
Dae-Yun Kim
College of Science and Technology, Nihon University, Funabashi, Chiba, Japan
Yasuhiro Futakawa, Hiroki Yoshikawa & Arata Tsukamoto
Department of Physics, University of Ulsan, Ulsan, Republic of Korea
Sanghoon Kim
Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Osaka, Japan
Teruo Ono
AuthorsDuck-Ho Kim
Mitsutaka Haruta
Hye-Won Ko
Gyungchoon Go
Hyeon-Jong Park
Tomoe Nishimura
Dae-Yun Kim
Takaya Okuno
Yuushou Hirata
Yasuhiro Futakawa
Hiroki Yoshikawa
Wooseung Ham
Sanghoon Kim
Hiroki Kurata
Arata Tsukamoto
Yoichi Shiota
Takahiro Moriyama
Sug-Bong Choe
Kyung-Jin Lee
Teruo Ono
Contributions
D.-H.K. conceptualized the work. D.-H.K. and T. Ono supervised the study. Y.F., H.Y. and A.T. prepared the films and T.N., T. Okuno, Y.H. and W.H. fabricated the devices. D.-H.K. and T.N. conducted the experiments for the DMI measurement. D.-Y.K. and S.-B.C. helped with the experiment for the asymmetric domain expansion. M.H. and H.K. performed the microscopy experiments. H.-W.K., G.G., H.-J.P. and K.-J.L. performed the numerical calculation based on the tight-binding model. D.-H.K. performed the analysis. D.-H.K., K.-J.L. and T.-Ono wrote the manuscript. All the authors discussed the results and commented on the manuscript.
Corresponding authors
Correspondence to
Duck-Ho Kim or Teruo Ono.Ethics declarations
Competing interests
The authors declare no competing interests.Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary Information
Supplementary Notes 1–7, Supplementary Figs. 1–9, Supplementary Tables 1 and 2, and Supplementary References 1–13.About this article
Cite this article
Kim, DH., Haruta, M., Ko, HW. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys.
Nat. Mater. 18,685–690 (2019). https://doi.org/10.1038/s41563-019-0380-xReceived:14 January 2018
Accepted:16 April 2019
Published:27 May 2019
Issue Date:July 2019
Further reading
Richa Pokharel Madhogaria
,Chang-Ming Hung
,Baleeswaraiah Muchharla
,Anh Tuan Duong
,Raja Das
,Pham Thanh Huy
,Sunglae Cho
,Sarath Witanachchi
,Hariharan Srikanth
&Manh-Huong Phan
Physical Review B
(2021)
Yangping Wang
,Chaozhong Li
,Hongyan Zhou
,Junshuai Wang
,Guozhi Chai
&Changjun Jiang
Applied Physics Letters
(2021)
Joseph Barker
&Unai Atxitia
Journal of the Physical Society of Japan
(2021)
Heng-An Zhou
,Teng Xu
,Hao Bai
&Wanjun Jiang
Journal of the Physical Society of Japan
(2021)