- 大语言模型LLM原理篇
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- Golang教程——配置环境,再探GoLand
棏郢.
Gogolang开发语言后端
文章目录一、Go是什么?二、环境配置验证配置环境变量三、安装开发者工具GoLand四、HelloGolang一、Go是什么?Go(也称为Golang)是一种开源的编程语言,由Google开发并于2009年首次发布。Go语言旨在提供一种简单、高效、可靠的编程语言,适用于构建可扩展的软件系统。Go语言具有以下特点:简洁易读:Go语言的语法简洁明了,易于阅读和理解。它摒弃了一些复杂的语法和概念,使得代码
- kotlin协程的使用详解
一、协程是什么协程基于线程,它是轻量级线程。Kotlin协程是一种基于挂起函数(suspendfunctions)和结构化并发(structuredconcurrency)的轻量级并发编程模型,允许开发者以接近同步代码的简洁方式编写异步、非阻塞的逻辑。其核心是通过协作式任务调度(而非抢占式线程切换),在单线程或多线程环境中高效管理并发任务,避免传统线程的资源消耗和复杂性,同时提供直观的错误处理和生
- JVM——垃圾回收
五月茶
JVMjvm
在Java开发中,JVM不仅负责运行Java字节码,还通过自动内存管理机制帮助开发者避免手动内存管理的复杂性。1.JVM内存模型JVM的内存模型主要包括以下几个部分:方法区(JDK8之后叫元空间):存储类信息,常量池,静态变量堆:所有线程共享的一块内存区域,存放对象实例栈:线程私有程序计数器:线程私有,记录当前线程执行的字节码行号本地方法栈:为Native方法服务2.Java堆的划分年轻代Surv
- Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
青铜锁00
#退化论文阅读深度学习论文阅读图像处理
LearningFullyConvolutionalNetworksforIterativeNon-blindDeconvolution1.研究目标与实际问题1.1研究目标1.2实际意义2.创新方法与模型设计2.1核心框架:迭代式梯度域处理2.1.1模型架构2.2关键技术实现2.2.1梯度域去噪网络2.2.2解卷积模块(核心公式实现)2.2.3损失函数设计2.2.4超参数端到端学习2.3与传统方法
- LabVIEW实现SSB调制解调技术的详细教程
九门提督守皇上
本文还有配套的精品资源,点击获取简介:本文详细探讨了在LabVIEW环境下实现单边带调制(SSB)的技术和原理。SSB是一种高效且广泛应用于无线电通信的模拟调制技术。通过LabVIEW的虚拟仪器(VI)编程,可以完成包括信号生成、预处理、调制、滤波、存储或发送以及接收、反向调制、解调和后处理在内的完整SSB调制解调过程。这些步骤对于优化通信系统和提高通信效率至关重要。1.SSB调制解调技术概述1.
- Python 安装使用 tesseract OCR 识别中文
花果山总钻风
Python/FlaskLinuxpythonocr开发语言
前言:i、中文识别效果更好的开源OCR库:CnOCR使用教程ii、6款开源中文OCR使用介绍(亲测效果):点我查看iii、windows安装tesserract教程:windows安装:点我查看教程1、点我查看教程2windows安装完成,设置好环境变量后,报找不到路径的错误点这里:解决办法本文为CentOS下安装教程Tesseract的OCR引擎目前已作为开源项目发布在GoogleProject
- 【深度学习|学习笔记】如何在深度学习中使用 正则化技术 进行模型压缩、稀疏建模和迁移学习调优?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记迁移学习人工智能机器学习
【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?文章目录【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?✅一、使用正则化进行模型压缩(ModelCompression)目标:方法:L1正则化促使权重稀疏化代码示例:后续压缩步骤
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- Python中Tesseract OCR的中文识别包实操指南
本文还有配套的精品资源,点击获取简介:TesseractOCR是一个开源的光学字符识别引擎,支持多语言包括中文识别。介绍如何在Python中使用pytesseract库进行图像文字识别,并详细说明安装TesseractOCR以及其中文语言包的步骤。提供了一个Python示例代码来展示图像识别的流程,并解释如何通过预处理提高识别准确率。此外,概述了TesseractOCR的高级功能和训练自定义模型的
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- 智能之火,重塑创造:大模型如何点燃新一代开发引擎?
黑巧克力可减脂
AIGC人工智能AIGC
导言:普罗米修斯之火再现在科技演进的长河中,每一次生产力的跃迁都伴随着工具的质变。从蒸汽机轰鸣到电力普及,再到信息高速公路的铺就,人类驾驭能量的能力不断突破。今天,我们站在一个崭新的临界点上:大语言模型(LLM)正将人工智能的“普罗米修斯之火”引入软件开发的核心腹地。这不再仅仅是效率的优化,更是对开发者角色、开发流程乃至软件本质的深度重塑。GitHubCEOThomasDohmke曾断言:“Cop
- 电商搜索新纪元:大模型引领购物体验革新
大模型教程
职场和发展大模型AI大模型算法人工智能
随着电商行业的蓬勃发展,搜索技术作为连接用户与商品的桥梁,其重要性日益凸显。在技术不断革新的今天,电商搜索技术经历了哪些阶段?面对大模型的飞速发展,企业又将如何把握趋势,应对挑战?为了深入探讨这些问题,京东技术总监翟周伟与InfoQ栏目探讨了电商搜索技术的发展历程、当前的应用状况以及面临的挑战和未来的发展方向。以下是采访的详细内容。InfoQ:在您看来电商搜索经历了哪些阶段?翟周伟:我从技术发展的
- LoRA 实战指南:NLP 与 CV 场景的高效微调方法全解析
fairymt
产品经理的AI秘籍自然语言处理人工智能机器学习
大模型已成AI应用的“标配”,但高昂的训练和部署成本让很多企业望而却步。LoRA(Low-RankAdaptation)作为一种轻量级微调方案,正成为NLP与CV场景中低成本定制的利器。本文详细通过详细介绍LoRA的核心原理、在文本与图像任务中的应用场景、主流工具框架与实践方式,帮助你快速掌握这项高性价比技术。国产生态实战:基于LLaMA-Factory+DeepSeek+LoRA+FastAPI
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- 智能新纪元:大语言模型如何重塑电商“人货场”经典范式
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
开篇引言“善战者,求之于势,不责于人。”——《孙子兵法·兵势篇》当全球电商交易额突破6.3万亿美元(Statista2024),增长引擎却显露疲态。流量红利消退、同质化竞争加剧、消费者需求碎片化——传统“人货场”理论正遭遇前所未有的挑战。而大语言模型(LLM)的出现,恰似一柄重铸商业逻辑的“科技之锤”,正在为电商领域开启一场静水深流的革命性变革。基石重塑:当“人货场”遇见大模型智能经典理论再审视:
- AI:微调框架 LLaMA-Factory(Large Language Model Factory)
xyzroundo
AI人工智能llama语言模型sftllama-factoryAI
LLaMA-Factory(LargeLanguageModelFactory)是由北航团队开源的高效大语言模型(LLM)微调框架,旨在简化大型语言模型的定制化训练流程,支持超过100种主流模型和多种先进微调技术。以下从核心功能、安装部署、微调流程和应用场景四个方面详细介绍:一、核心功能与特点广泛的模型支持支持LLaMA3、Mistral、Qwen、ChatGLM、Gemma、Phi、Yi、Bai
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- (SERIES1) MacOS Terminal远程SSH连接Aliyun ECS服务器纯命令行模式下部署DM8教程(服务器环境Ubuntu 20.04LTS )
Ender-Shadows
达梦数据库ubuntumacos阿里云
1DM数据库版本介绍1.1版本区别 DM8目前的版本主要包括标准版、企业版、安全版和开发版。前三项的比较如表1-1所示。以适用场景为角度进行分类,标准版适用于小型应用开发,企业版适合生产环境级应用,安全版则在具备所有企业版基础上加入了对四权分立、强制访问控制、审计和实时侵害检测等功能上的补全,在安全性方面实现了更加全面完善的安全策略;至于开发版则专供开发者学习、测试、开发用途,有1年免费试用期,
- 让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!
Echo_Wish
Python进阶人工智能学习
让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!朋友们,今天咱不聊ChatGPT,不聊大模型黑魔法,也不玩Prompt咒语。我想聊一个比“怎么训模型”更底层、更值得思考的问题:如果我们能让模型自己学会怎么更快、更聪明地学习,是不是就能少走很多弯路?这,就是元学习(MetaLearning)要解决的事儿。说白了,元学习是AI给AI上培训课的过程。咱们天天琢磨怎么喂模型数据、调超参、搞迁移
- 大模型WebUI:Gradio全解系列10——Additional Features:补充特性(上)
龙焰智能
Gradio全解教程gradioqueuestreaming提示进度条alertprogress
大模型WebUI:Gradio全解系列10——AdditionalFeatures:补充特性(上)前言本篇摘要10.AdditionalFeatures:补充特性10.1队列10.1.1使用方法10.1.2配置队列演示10.2输入输出流10.2.1输出流1.生成器yield2.流媒体10.2.2输入流1.流事件2.图像滤镜10.2.3统一的输入输出流10.2.4跟踪过去的输入或输出10.3提示及进
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- FastGPT与MCP:解锁AI新时代的技术密码
挑战者666888
AI模型应用实战迁移学习集成学习文心一言
一、AI浪潮中的新星:FastGPT与MCP登场在当今科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到复杂的图像识别系统,AI的应用无处不在,而其中的关键技术——语言模型和集成平台,更是备受关注。FastGPT和MCP(Multi-ComponentPlatform)作为这一领域的新兴代表,正逐渐崭露头角,为AI的发展注入新的活力。FastGPT,以其高效的推理
- 硬件工程师入门与进阶全攻略
攻城狮-鹏哥
单片机单片机stm32dsp开发fpga开发51单片机mcu嵌入式硬件
一、硬件工程师成长阶段划分(一)能力成长四象限模型(二)成长阶段对照表阶段理论要求实践技能项目经验典型岗位入门期数电模电基础万用表/示波器使用简单电路焊接硬件助理工程师成长期单片机/嵌入式系统原理图设计/PCBLayout功能模块开发初级硬件工程师成熟期高速电路设计/EMC理论信号完整性分析完整产品硬件开发资深硬件工程师专家期前沿技术跟踪系统级方案设计复杂系统架构设计硬件系统工程师二、入门阶段:夯
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- 《数字孪生+AI:如何模拟人类大脑的智能进化?》
嘉图明
AI合伙人人工智能机器学习深度学习大数据物联网
《数字孪生+AI:如何模拟人类大脑的智能进化?》大脑发展的五阶段理论与AI模型发展关系人类大脑在一生中经历五个主要发展阶段,从胎儿期一直到老年期阶段1(孕期0–10月):大脑迅速增长,大量神经元和神经连接形成这是大脑发育的基础阶段,孕期的营养和环境对神经系统发育至关重要。阶段2(出生–6岁):幼儿期大脑突飞猛进地构建神经元连接。2-3岁时大脑已达到成人大小的80%,3岁时突触连接数高达1000万亿
- 鸿蒙应用变现策略:盈利模式全面分析
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
鸿蒙应用变现策略:盈利模式全面分析关键词:鸿蒙应用、变现策略、盈利模式、应用内购买、广告盈利、订阅服务摘要:本文旨在全面分析鸿蒙应用的变现策略和盈利模式。随着鸿蒙操作系统的广泛应用,众多开发者希望借助这一平台实现应用的盈利。文章将从背景介绍入手,阐述鸿蒙应用的发展现状和盈利的重要性。接着详细解析核心概念,包括常见的盈利模式及其原理。通过数学模型和公式说明不同盈利模式的潜在收益计算方法。结合项目实战
- 1、 快速上手 [代码级手把手解析diffusers库]
Yuezero_
AIGC人工智能深度学习
快速上手Pipeline内部执行步骤后续更新计划diffusers是HuggingFace推出的一个diffusion库,它提供了简单方便的diffusion推理训练pipe,同时拥有一个模型和数据社区,代码可以像torchhub一样直接从指定的仓库去调用别人上传的数据集和pretraincheckpoint。除此之外,安装方便,代码结构清晰,注释齐全,二次开发会十分有效率。diffusers使用
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,