block的本质
block本质上也是一个OC对象,它内部也有个isa指针
block是封装了函数调用以及函数调用环境的OC对象
block的底层结构
通过转成C++代码,查看一下block的实际结构
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
// 构造函数(类似于OC的init方法),返回结构体对象
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
// 封装了block执行逻辑的函数
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_main_c60393_mi_0);
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
// 定义block变量
void (*block)(void) = &__main_block_impl_0(
__main_block_func_0,
&__main_block_desc_0_DATA
);
// 执行block内部的代码
block->FuncPtr(block);
}
return 0;
}
block的变量捕获(capture)
为了保证block内部能够正常访问外部的变量,block有个变量捕获机制
auto变量的捕获
void (^block)(void);
void test()
{
int age = 10;
static int height = 10;
block = ^{
// age的值捕获进来(capture)
NSLog(@"age is %d, height is %d", age, height);
};
age = 20;
height = 20;
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
test();
block();
}
}
转成C++代码如下:
捕获对象类型的auto变量
struct __MJPerson__test_block_impl_0 {
struct __block_impl impl;
struct __MJPerson__test_block_desc_0* Desc;
MJPerson *self;
__MJPerson__test_block_impl_0(void *fp, struct __MJPerson__test_block_desc_0 *desc, MJPerson *_self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __MJPerson__test_block_func_0(struct __MJPerson__test_block_impl_0 *__cself) {
MJPerson *self = __cself->self; // bound by copy
NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_MJPerson_1027e6_mi_0, ((NSString *(*)(id, SEL))(void *)objc_msgSend)((id)self, sel_registerName("name")));
}
static void __MJPerson__test_block_copy_0(struct __MJPerson__test_block_impl_0*dst, struct __MJPerson__test_block_impl_0*src) {_Block_object_assign((void*)&dst->self, (void*)src->self, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __MJPerson__test_block_dispose_0(struct __MJPerson__test_block_impl_0*src) {_Block_object_dispose((void*)src->self, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __MJPerson__test_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __MJPerson__test_block_impl_0*, struct __MJPerson__test_block_impl_0*);
void (*dispose)(struct __MJPerson__test_block_impl_0*);
} __MJPerson__test_block_desc_0_DATA = { 0, sizeof(struct __MJPerson__test_block_impl_0), __MJPerson__test_block_copy_0, __MJPerson__test_block_dispose_0};
block的类型
block有3种类型,可以通过调用class方法或者isa指针查看具体类型,最终都是继承自NSBlock类型
- NSGlobalBlock ( _NSConcreteGlobalBlock )
- NSStackBlock ( _NSConcreteStackBlock )
- NSMallocBlock ( _NSConcreteMallocBlock )
block的copy
每一种类型的block调用copy后的结果如下所示
在ARC环境下,编译器会根据情况自动将栈上的block复制到堆上,比如以下情况
block作为函数返回值时
将block赋值给__strong指针时
block作为Cocoa API中方法名含有usingBlock的方法参数时
block作为GCD API的方法参数时MRC下block属性的建议写法
@property (copy, nonatomic) void (^block)(void);ARC下block属性的建议写法
@property (strong, nonatomic) void (^block)(void);
@property (copy, nonatomic) void (^block)(void);
对象类型的auto变量
当block内部访问了对象类型的auto变量时
如果block是在栈上,将不会对auto变量产生强引用
如果block被拷贝到堆上
会调用block内部的copy函数
copy函数内部会调用_Block_object_assign函数
_Block_object_assign函数会根据auto变量的修饰符(__strong、__weak、__unsafe_unretained)做出相应的操作,形成强引用(retain)或者弱引用-
如果block从堆上移除
会调用block内部的dispose函数
dispose函数内部会调用_Block_object_dispose函数
_Block_object_dispose函数会自动释
__weak问题解决
在使用clang转换OC为C++代码时,可能会遇到以下问题
cannot create __weak reference in file using manual reference
解决方案:支持ARC、指定运行时系统版本,比如
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc -fobjc-arc -fobjc-runtime=ios-8.0.0 main.m
__block修饰符
__block可以用于解决block内部无法修改auto变量值的问题
__block不能修饰全局变量、静态变量(static)
编译器会将__block变量包装成一个对象
__block的内存管理
- 当block在栈上时,并不会对__block变量产生强引用
- 当block被copy到堆时
会调用block内部的copy函数
copy函数内部会调用_Block_object_assign函数
_Block_object_assign函数会对__block变量形成强引用(retain)
-
当block从堆中移除时
会调用block内部的dispose函数
dispose函数内部会调用_Block_object_dispose函数
_Block_object_dispose函数会自动释放引用的__block变量(release)
__block的__forwarding指针
对象类型的auto变量、__block变量
当block在栈上时,对它们都不会产生强引用
当block拷贝到堆上时,都会通过copy函数来处理它们
__block变量(假设变量名叫做a)
_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
对象类型的auto变量(假设变量名叫做p)
_Block_object_assign((void*)&dst->p, (void*)src->p, 3/*BLOCK_FIELD_IS_OBJECT*/);
当block从堆上移除时,都会通过dispose函数来释放它们
__block变量(假设变量名叫做a)
_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);
对象类型的auto变量(假设变量名叫做p)
_Block_object_dispose((void*)src->p, 3/*BLOCK_FIELD_IS_OBJECT*/);
被__block修饰的对象类型
当__block变量在栈上时,不会对指向的对象产生强引用
当__block变量被copy到堆时
会调用__block变量内部的copy函数
copy函数内部会调用_Block_object_assign函数
_Block_object_assign函数会根据所指向对象的修饰符(__strong、__weak、__unsafe_unretained)做出相应的操作,形成强引用(retain)或者弱引用(注意:这里仅限于ARC时会retain,MRC时不会retain)
如果__block变量从堆上移除
会调用__block变量内部的dispose函数
dispose函数内部会调用_Block_object_dispose函数
_Block_object_dispose函数会自动释放指向的对象(release)
解决循环引用问题
- ARC
-
MRC
block的类型
继承自NSBlock这种类型
打印block的类型
void (^block)(void) = ^{
NSLog(@"Hello");
};
NSLog(@"%@", [block class]);
NSLog(@"%@", [[block class] superclass]);
NSLog(@"%@", [[[block class] superclass] superclass]);
NSLog(@"%@", [[[[block class] superclass] superclass] superclass]);
NSGlobalBlock : __NSGlobalBlock : NSBlock : NSObject
关掉arc之后,访问auto变量,才能看出来 是栈stackblock
GlobalBlock基本不会用,因为直接写成函数就好了,没必要写block
栈信息销毁了,所以调用后会出现垃圾数据
也会copyblock
为什么block要声明成copy,因为可以保证mrc,arc使用时是一致的
QA
block的原理是怎样的?本质是什么?
封装了函数调用以及调用环境的OC对象__block的作用是什么?有什么使用注意点?
修改变量的值,注意arc和mrc的差别block的属性修饰词为什么是copy?使用block有哪些使用注意?
block一旦没有进行copy操作,就不会在堆上
使用注意:循环引用问题block在修改NSMutableArray,需不需要添加__block?
如果是改变NSMutableArray的元素不需要添加,如果需要修改NSMutableArray对象则需要添加