- 软件架构设计艺术(从一个案例出发,成为优秀的软件架构师)
编码时空的诗意行者
软件架构设计开发语言系统架构软件设计设计模式
架构(建模)本质上是一种抽象,其目的是通过归类来减轻认知负担,避免重复思考和工作,提升计算能力。“通用”是建模的第一步,而“复用”则是确保建模有效性的关键。通过将共享属性或行为提取成独立模型,可以提高系统的灵活性和扩展性,同时也减少了错误的可能性。案例假设一家汽车经销商销售新车,并提供售后服务。客户可以在经销商处购买新车,如果车辆出现问题,可以返回经销商进行维修。我们准备为这家公司业务提供线上管理
- 加州CA 65测试(Proposition 65)的深度解读
南京速跃检测技术服务有限公司
学习方法创业创新
以下是关于加州CA65测试(Proposition65)的深度解读,结合法规核心、测试范围及合规影响进行结构化分析:一、法规背景与核心要求1.法规起源-名称:《1986年加州安全饮用水和有毒物质执行法》(SafeDrinkingWaterandToxicEnforcementAct),简称CA65或Prop65。-目的:保护加州居民免受致癌、致畸或生殖毒性化学物质的暴露风险,要求企业提供清晰警告标
- 深入理解 Java 内存模型(JMM):原理、可见性与并发控制
全栈探索者chen
javajava开发语言缓存程序人生数据库JMM内存
深入理解Java内存模型(JMM):原理、可见性与并发控制1.引言在多线程编程中,内存可见性、指令重排序和线程同步是开发者必须理解的核心概念。Java内存模型(JMM,JavaMemoryModel)定义了一组规则,确保Java程序在并发环境下的线程安全性和一致性。本文将深入剖析JMM的原理,并通过代码示例展示如何正确控制并发。2.什么是Java内存模型(JMM)?Java内存模型(JMM)是Ja
- Java 并发编程实战:深入理解线程池的核心原理与最佳实践
全栈探索者chen
javajava服务器开发语言性能优化缓存node.js数据库
Java并发编程实战:深入理解线程池的核心原理与最佳实践1.为什么需要线程池?在Java并发编程中,直接创建和管理线程的成本较高,频繁创建线程会带来性能开销和资源浪费。线程池(ThreadPool)的作用:降低线程创建和销毁的开销,提高系统响应速度。提高系统吞吐量,充分利用CPU资源。避免资源耗尽,限制最大线程数,防止OOM(内存溢出)。支持任务排队,确保任务按照一定规则执行。2.线程池的核心组成
- linux——线程
這~悸ベ雨落憂殇
Linuxlinuxjavaandroid
线程概念什么是线程?在一个程序里的一个执行流叫做线程。一切进程至少有一个线程线程在进程内部运行,本质是在进程地址空间内运行在Linux系统中,在CPU眼中,看到的PCB都要比传统的进程更加轻量化我们都知道在每一个进程都有属于自己的PCB,里面装满了描述进程的各种字段…,而线程呢,是在进程中产生的,所以会共享共一个进程地址空间,如上图所示。线程的优点创建一个新线程的代价要比创建一个新进程小与进程之间
- 股票市场的量化交易策略如何应对市场情绪变化?
云策量化
程序化炒股量化软件量化交易量化炒股QMT股票交易PTrade量化交易股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》股票市场的量化交易策略如何应对市场情绪变化?在股票市场中,量化交易策略是一种基于数学模型和算法的交易方式,它通过分析历史数据来预测未来价格走势,并据此制定交易决策。然而,市场情绪的变化对股票价格有着不可忽视的影响。本文将探讨量化交易策略如何应对市场情绪的变化,并提供一些具体的代码示例。一、市场情绪的重要性市场情绪是指投资者对市
- 股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?
云策量化
量化交易量化软件量化炒股量化炒股QMT量化交易入门教程PTrade股票投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》标题:股神系列:蒋菲的量化投资中,如何利用大数据优化模型?她的数据来源有哪些?正文:在金融投资的世界里,量化投资以其科学、系统和客观的特点,成为了众多投资者追求的“圣杯”。而在量化投资领域,蒋菲以其独特的大数据量化投资模型而闻名。本文将深入探讨蒋菲如何利用大数据优化其量化投资模型,以及她的数据来源有哪些。一、量化投资模型的优化
- 【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理
qzw1210
gpt人工智能深度学习
搭建本地大模型GPT-NeoX:详细步骤及常见问题处理GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。1.系统要求1.1硬件要求1.2软件要求操作系统:Linux(推荐Ubuntu20.04或更高版本)CUDA:11.2或更高版本Python
- Deepseek 个性化决策输出
meisongqing
DeepSeek个性化
Deepseek个性化决策输出:基于用户画像的定制化内容生成在教育场景中,通过构建动态用户画像与智能决策模型,教育数字人可基于学生水平实时调整讲解深度,实现精准化、个性化的学习支持。以下是核心实现框架与关键步骤:1.用户画像构建:多维度数据融合数据采集:显性数据:年龄、学科成绩、测试结果、学习时长、知识点掌握进度。隐性数据:交互行为(如答题犹豫时间、回放次数)、情绪识别(语音/表情分析)、认知负荷
- 我与DeepSeek读《大型网站技术架构》- 总结
诺亚凹凸曼
架构
文章目录读后感一、总结二、反思三、创新四、展望当代大型网站架构一、架构分层模型二、关键组件与技术选型三、架构演进策略四、架构突破口读后感一、总结架构演化优先于设计大型网站架构不是预先设计的产物,而是通过反复迭代和试错演化形成的。技术选型的核心动机是对业务需求的深刻理解,而非盲目模仿。典型案例包括淘宝架构因业务爆发力被迫转型为分布式系统。开放与协作的价值互联网的开放生态通过API经济(如淘宝Open
- 深入探讨Spring MVC:原理、架构与实践
luckilyil
开发框架springmvc架构
SpringMVC原理与架构解析1.SpringMVC概述SpringMVC是Spring框架中的一个模块,专注于实现Web应用的MVC设计模式。它通过将应用逻辑分为模型(Model)、视图(View)和控制器(Controller),使得开发人员能够清晰地组织代码,提高开发效率和可维护性。2.SpringMVC的核心组件SpringMVC的核心组件包括:DispatcherServlet:作为前
- LLMOps 是什么?
AI Agent首席体验官
人工智能chatgpt
1.LLMOps是什么?LLMOps(LargeLanguageModelOperations)指的是一系列用于管理、部署和优化大规模语言模型(LLMs)的操作和实践。这些操作可以涵盖多个领域,例如模型的训练、推理优化、部署、监控、故障排除等。在实际应用中,LLMOps的目标是提高语言模型的效率和效果,确保模型能够在各种实际场景中顺利运行。通常,它包括以下几个关键方面:模型训练:如何高效地训练大规
- Kubernetes 资源管理实战:合理配置 CPU 与内存请求和限制
XMYX-0
K8Skubernetes容器
文章目录Kubernetes资源管理实战:合理配置CPU与内存请求和限制理解Kubernetes中的资源请求与限制资源请求(Requests)资源限制(Limits)单位解析案例分析:20GB服务器与两个服务的内存配置是否有必要设置如此高的内存限制?如何合理配置?补充知识点:监控与自动扩缩容监控工具自动扩缩容(Autoscaling)总结Kubernetes资源管理实战:合理配置CPU与内存请求和
- 前端技术学习记录:react+dvajs+ant design实现暴走计算器的页面重构(二)
大泡泡糖
学习记录reactjs前端gitwebstorm
前端技术学习记录:react+dvajs+antdesign实现暴走计算器的页面重构(二)前言定义Modelconnect起来更新state拥抱变化主题切换更换页面获取当前设备类型编写武学选择前言www定义Model完成UI后,现在开始处理数据和逻辑。dva通过model的概念把一个领域的模型管理起来,包含同步更新state的reducers,处理异步逻辑的effects,订阅数据源的subscr
- Cursor44.11 无限续杯攻略:持续畅享 AI 编程利器
不会算法的小灰
人工智能编辑器vscodeAI编程经验分享
一、引言在当今数字化快速发展的时代,高效的编程工具对于开发者来说如同珍宝。Cursor作为一款基于VSCode二次开发的强大AI编程编辑器,凭借其内置的多种AI大模型,如GPT-4、GPT-4o、Claude-3.5以及近期热门的DeepSeek满血版R1,为开发者提供了前所未有的编程体验。它能够快速生成代码、精准修复错误、智能优化逻辑等,极大地提升了编程效率。然而,新用户注册Cursor虽可获得
- 在控制台中监控 Linux 性能的十种方法
小郎碎碎念
Linux运维linux运维服务器
对下面的文章内容进行了总结,也是自己mark一下,以后用到可以直接来这里查看https://www.jeffgeerling.com/blog/2025/top-10-ways-monitor-linux-console10个linux系统重用来查看性能的工具(类top)top:用于监控Linux(或包括macOS在内的任何UNIX系统)的资源使用情况,能展示基本的系统指标,如CPU、内存、任务等
- 2024MathorCup数学建模之——MathorCup奖杯”获得者经验思路分享
美赛数学建模
数学建模
一、经验分享1.工具选择:顺手即可。Matlab和Python都是比较主流的选择,二者的应用场合各有不同。Python在数据分析、深度学习方面的优势愈发明显,而Matlab更适合进行物理仿真和数值计算。不过随着Python社区不断发展,其功能也愈发全面与强大,因此我们比较推荐学有余力的情况下可以更早接触Python。2.模型算法:多多益善。不一定要精通所有的算法,但是手上至少要准备一些常用的算法(
- 万字深度解析:DeepSeek-V3为何成为大模型时代的“速度之王“?
羊不白丶
大模型算法
引言在AI军备竞赛白热化的2024年,DeepSeek-V3以惊人的推理速度震撼业界:相比前代模型推理速度提升3倍,训练成本降低70%。这背后是十余项革命性技术的叠加创新,本文将为您揭开这艘"AI超跑"的性能密码。DeepSeek-V3的技术路径证明:计算效率的本质是知识组织的效率。其MoE架构中2048个专家的动态协作,恰似人脑神经网络的模块化运作——每个专家不再是被动执行计算的"劳工",而是具
- 【React】List使用QueueAnim动画效果不生效——QueueAnim与函数组件兼容性问题
Yvette-W
Reactreact.jslist前端前端框架javascript
版本:“antd-mobile”:“^5.37.1”,“rc-queue-anim”:“^2.0.0”,问题在使用QueueAnim时,如果动画的子元素是AntDesignMobile中的组件(如List.Item),可能会遇到动画不生效的问题,并且会看到类似以下警告:Warning:Functioncomponentscannotbegivenrefs.Attemptstoaccessthisr
- YOLOV8多模态(可见光+红外光,基于Ultralytics官方代码实现)
@M_J_Y@
目标检测YOLO计算机视觉目标检测python
YOLOV8多模态(可见光+红外光,基于Ultralytics官方代码实现)各位读者麻烦给个star或者fork,求求了。YOLOV8双分支模型架构图YOLOV8多模态目标检测前言:环境配置要求1.数据集DroneVehicle数据集(可见光+热红外)2.数据集文件格式(labeles:YOLO格式)3.权重文件下载4.配置模型yaml文件和数据集yaml文件5.训练6.测试7.打印模型信息8.o
- Orange 开源项目 - 集成DeepSeek大模型
mmd0308
Orange开源项目开源DeepseekorangeAI编程
1DeepSeek大模型DeepSeek是一家专注实现AGI的中国公司,如果你还想了解更多关于DeepSeek的信息,可以前往【官方网站】查询2集成DeepSeek大模型2.1获取API-KEY获取DeepSeekAPI-KEY,请参考DeepSeek官网「获取DeepSeekAPI-KEY」2.2集成对话模型(ChatModel)publicclassDeepSeekChatModelServi
- 深度学习框架PyTorch——从入门到精通(6.2)自动微分机制
Fansv587
深度学习pytorch人工智能经验分享python机器学习
本节自动微分机制是上一节自动微分的扩展内容自动微分是如何记录运算历史的保存张量非可微函数的梯度在本地设置禁用梯度计算设置requires_grad梯度模式(GradModes)默认模式(梯度模式)无梯度模式推理模式评估模式(`nn.Module.eval()`)自动求导中的原地操作原地操作的正确性检查多线程自动求导CPU上的并发不确定性计算图保留自动求导节点的线程安全性C++钩子函数不存在线程安全
- Deepseek和豆包在技术创新方面有哪些相同点与不同点?
alankuo
人工智能
Deepseek和豆包在技术创新方面的相同点与不同点如下:相同点架构基础:都以Transformer架构为基础进行开发。Transformer架构能有效处理长序列数据,捕捉文本语义信息,为模型性能提供基础。混合专家模型(MoE)应用:都采用了MoE架构。该架构将模型拆分为多个“专家”,训练和推理时让不同“专家”负责不同任务或数据子集,提高模型表达能力和效率,降低训练成本。模型优化以提升性能:都通过
- 燃爆!程序员如何借助 AI 大模型冲破编程效率枷锁?(以DeepSeek,ChatGPT为例)
羑悻的小杀马特.
AI学习chatgptdeepseekAI大模型开发语言
AI大模型已成为程序员提升效率的有力助手。本文聚焦DeepSeek和ChatGPT,探讨程序员如何借其冲破编程效率枷锁。在代码编写阶段,它们能快速生成基础框架、实现特定功能及复杂算法代码;调试时,精准分析错误并给出优化建议;文档生成方面,为函数、类及项目文档助力。程序员需掌握高效交互技巧,结合自身经验,合理利用AI大模型,全面提升编程效率,开启高效编程新境界。目录一·本篇背景:二、AI大模型简介2
- 使用Yeager.ai轻松构建LangChain工具和代理
qahaj
人工智能langchainpython
技术背景介绍在现代AI开发框架中,如何快速构建、测试和部署AI解决方案是一个重要的课题。Yeager.ai为此提供了一个完整的生态系统,旨在简化AI智能体和工具的创建过程。它的核心组件yAgents是一个无代码的LangChain代理构建器,能够让用户轻松地集成各种语言模型和资源,非常适合开发者、研究人员和AI爱好者在不同应用场景中使用。核心原理解析Yeager.ai利用LangChain框架,通
- 【机器学习】算法分类
CH3_CH2_CHO
什么?!是机器学习!!机器学习算法有监督学习无监督学习半监督学习强化学习
1、有监督学习1.1定义使用带标签的数据训练模型。有监督学习是机器学习中最常见的一种类型,它利用已知的输入特征和对应的输出标签来训练模型,使模型能够学习到特征与标签之间的映射关系。在训练过程中,模型会不断地调整自身的参数,以最小化预测值与真实标签之间的误差,从而提高预测的准确性。1.2回归问题1.2.1目标预测连续值。回归问题的目标是预测一个连续的数值结果,模型的输出是一个实数值。1.2.2解释回
- 硬核项目 KV 存储,轻松拿捏面试官!
程序员老舅
C++Linux后端KV存储C++C++后端开发Redis内存索引C++数据结构
硬核项目KV存储,轻松拿捏面试官!在简历上如何写这个项目?项目概述基于Bitcask模型,兼容Redis数据结构和协议的高性能KV存储引擎设计细节采用Key/Value的数据模型,实现数据存储和检索的快速、稳定、高效存储模型:采用Bitcask存储模型,具备高吞吐量和低读写放大的特征持久化:实现了数据的持久化,确保数据的可靠性和可恢复性索引:多种内存索引结构,高效、快速数据访问并发控制:使用锁机制
- MongoDB慢日志查询及索引创建
laolitou_1024
中间件微服务数据库mongodb
MongoDB的慢日志(SlowQueryLog)对于运维和程序员来说都非常重要,因为它直接关系到数据库的性能和应用程序的稳定性。以下分享介绍下MongoDB慢日志查询及索引创建相关的一些笔记。一,准备1.使用db.currentOp()实时监控db.currentOp()可以查看当前正在执行的操作,适合捕捉瞬时的高CPU操作。db.currentOp()示例:过滤长时间运行的操作db.curre
- vggt 3d重建 相机位姿,新视角生成
AI算法网奇
3D视觉人工智能深度学习
vggt动态追踪实时重建https://github.com/facebookresearch/vggtimporttorchfromvggt.models.vggtimportVGGTfromvggt.utils.load_fnimportload_and_preprocess_imagesdevice="cuda"iftorch.cuda.is_available()else"cpu"dtyp
- MCS51指令系统及汇编程序设计
cxz204986
51单片机
一、MSC--51指令系统包含111条基本指令。指令:是CPU按照人的意图来完成某种操作的命令,它以英文名称或缩写形式作为助记符。掌握MCS-51汇编语言指令是51单片机汇编设计程序的基础。按所占字节分,MCS-51指令分三种:(1)单字节指令49条:(2)双字节指令45条;(3)三字节指令17条。按执行时间分,MCS-51指令分三种:(1)1个机器周期指令64条;(2)2个机器周期指令45条;(
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&