文件操作(你真的会读写文件吗?)

文章目录

  • 一、为什么使用文件?
  • 二、什么是文件?
    • 2.1 程序文件
    • 2.2 数据文件
    • 2.3 文件名
  • 三、二进制文件和文本文件
    • 3.1 二进制文件
    • 3.2 文本文件
  • 四、文件的打开和关闭
    • 4.1 流和标准流
      • 4.1.1 流
      • 4.1.2 标准流
    • 4.2 文件指针
    • 4.3 fopen和fclose
  • 五、文件的顺序读写
    • 5.1 顺序读写函数
      • 5.1.1 fgetc和fputc
      • 5.1.2 fgets和fputs
      • 5.1.3 fscanf和fprintf
      • 5.1.4 fread和fwrite
    • 5.2 对比一组函数
  • 六、文件的随机读写
    • 6.1 fseek
    • 6.2 ftell
    • 6.3 rewind
  • 七、文件读取结束的判定
    • 7.1 是否结束的判定
    • 7.2 结束原因的判定
  • 八、文件缓冲区

欢迎各位小伙伴关注我的专栏,和我一起系统学习C语言,共同探讨和进步哦!

学习专栏:

《零基础学C语言》


一、为什么使用文件?

如果没有文件,我们写的程序的数据是存储在电脑的内存中,如果程序退出,内存回收,数据就丢失了,等再次运行程序,是看不到上次程序的数据的,如果要将数据进行持久化的保存,我们可以使用文件。

二、什么是文件?

磁盘上的文件是文件。 但是在程序设计中,我们一般谈的文件有两种:程序文件、数据文件(从文件功能的角度来分类的)。

2.1 程序文件

程序文件包括源程序文件(后缀为.c),目标文件(windows环境后缀为.obj),可执行程序(windows环境后缀为.exe)。

2.2 数据文件

文件的内容不一定是程序,而是程序运行时读写的数据,比如程序运行需要从中读取数据的文件,或者输出内容的文件。


我们讨论的重点就是对数据文件进行操作!


2.3 文件名

一个文件要有一个唯一的文件标识

文件名包含3部分:文件路径 + 文件名主干 + 文件后缀

  • 例如: c:\code\test.txt

为了方便起见,文件标识常被称为文件名

三、二进制文件和文本文件

根据数据的组织形式,数据文件被称为文本文件或者二进制文件

3.1 二进制文件

数据在内存中以二进制的形式存储,如果不加转换的输出到外存,就是二进制文件。

3.2 文本文件

如果转换为以ASCII字符的形式存储的文件,就是文本文件。


那么,为什么要分两种不同文件存储呢?这就关系到数据在内存中的存储。

字符一律以ASCII形式存储,数值型数据既可以用ASCII形式存储,也可以使用二进制形式存储。

  • 如有整数10000,如果以ASCII码的形式输出到磁盘,则磁盘中占用5个字节(每个字符⼀个字节),而二进制形式输出,则在磁盘上只占4个字节

文件操作(你真的会读写文件吗?)_第1张图片

所以使用二进制文件可以节省内存空间,但是文本文件的优势在于可读性(二进制文件一般都是乱码)

四、文件的打开和关闭

4.1 流和标准流

4.1.1 流

因为程序的数据需要和外部设备进行交互,而不同的外部设备交互方式不同,所以为了简化操作,抽象出一种概念——流。

流相当于数据与外部设备的中转站,程序员对流进行操作,就可以将数据与不同的外部设备交互,而并不需要知道其中的细节(相当于封装)。

4.1.2 标准流

那为什么我们从键盘输入数据,向屏幕上输出数据,并没有打开流呢?

那是因为C语言程序在启动的时候,默认打开了3个流:

  • stdin - 标准输入流,从键盘输入,scanf函数就是从标准输入流中读取数据。
  • stdout - 标准输出流,输出到屏幕,printf函数就是将信息输出到标准输出流中。
  • stderr - 标准错误流,输出到屏幕。

stdin、stdout、stderr 三个流的类型是: FILE* ,通常称为文件指针
C语言中,就是通过 FILE* 的文件指针来维护流的各种操作的。

4.2 文件指针

文件类型指针,简称为文件指针。

  • 每个被使用的文件都在内存中开辟了一个相应的文件信息区,用来存放文件的相关信息(如文件的名字,文件状态及文件当前的位置等)。
  • 这些信息是保存在⼀个结构体变量中的。该结构体类型是由系统声明的,取名FILE
//VS2013编译环境提供的 stdio.h 
struct _iobuf
{
	char *_ptr;
	int _cnt;
	char *_base;
	int _flag;
	int _file;
	int _charbuf;
	int _bufsiz;
	char *_tmpfname;
};
typedef struct _iobuf FILE;

那么,我们可以创建⼀个FILE*的指针变量pf,来维护FILE结构体(文件信息区),间接达到操作该文件的效果

文件操作(你真的会读写文件吗?)_第2张图片

4.3 fopen和fclose

在编写程序的时候,在打开文件的同时,都会返回⼀个FILE*的指针变量指向该文件,也相当于建立了指针和文件的关系

ANSIC 规定使用 fopen 函数来打开文件fclose关闭文件(可以类比于malloc和free的关系)

//打开⽂件
FILE * fopen ( const char * filename, const char * mode );
//关闭⽂件
int fclose ( FILE * stream );

打开文件时,要输入文件名和打开模式,如下代码:

int main()
{
	FILE* pf = fopen("data.txt", "w");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}
	//操作文件
	//...
	fclose(pf);
	pf = NULL;
	return 0;
}

下面是一些常用的打开模式:

文件使用方式 含义 如果指定文件不存在
“r”(只读) 为了输⼊数据,打开⼀个已经存在的⽂本⽂件 出错
“w”(只写) 为了输出数据,打开⼀个⽂本⽂件 建⽴⼀个新的⽂件
“a”(追加) 向⽂本⽂件尾添加数据 建⽴⼀个新的⽂件

以上指令打开的是文本文件,如果要打开二进制文件,那就在后面加个b,比如rb,wb,ab。

五、文件的顺序读写

5.1 顺序读写函数

函数名 功能 适用于
fgetc 字符输入 所有输入流
fputc 字符输出 所有输入流
fgets 文本行输入 所有输入流
fputs 文本行输出 所有输入流
fscanf 格式化输入 所有输入流
fprintf 格式化输出 所有输入流
fread 二进制输入 文件
fwrite 二进制输出 文件

5.1.1 fgetc和fputc

int fputc ( int character, FILE* stream );

将字符写入流

int main()
{
	FILE* pf = fopen("data.txt", "w");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}
	
	for (int i = 0; i < 26; ++i)
	{
		fputc('a' + i, pf);
	}

	fclose(pf);
	pf = NULL;
	return 0;
}
int fgetc ( FILE* stream );

从流中读取字符

int main()
{
	FILE* pf = fopen("data.txt", "r");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}

	for (int i = 0; i < 26; ++i)
	{
		printf("%c ", fgetc(pf));
	}

	fclose(pf);
	pf = NULL;
	return 0;
}

5.1.2 fgets和fputs

int fputs ( const char* str, FILE* stream );

将字符串写入流

int main()
{
	FILE* pf = fopen("data.txt", "w");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}
	
	for (int i = 0; i < 5; ++i)
	{
		fputs("hello world\n", pf);
	}

	fclose(pf);
	pf = NULL;
	return 0;
}
char* fgets ( char* str, int num, FILE* stream );

从流中读取num个字符(包含\0)放入字符数组

int main()
{
	FILE* pf = fopen("data.txt", "r");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}

	char arr[20] = "xxxxxxxxxxxxxxxxx";

	fgets(arr, 10, pf);

	fclose(pf);
	pf = NULL;
	return 0;
}

5.1.3 fscanf和fprintf

int fscanf ( FILE* stream, const char* format, ... );

从流中读取格式化数据

int fprintf ( FILE* stream, const char* format, ... );

将格式化数据写入流

typedef struct stu
{
	char name[20];
	int age;
	float score;
}stu;

int main()
{
	stu s = { 0 };
	fscanf(stdin, "%s %d %f", s.name, &(s.age), &(s.score));
	fprintf(stdout, "%s %d %f", s.name, s.age, s.score);
	return 0;
}

5.1.4 fread和fwrite

size_t fwrite ( const void* ptr, size_t size, size_t count, FILE* stream );

将ptr中count个大小为size的数据写入流

int main()
{
	stu s = { "lisi", 19, 69.36 };
	FILE* pf = fopen("data.txt", "wb");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}

	fwrite(&s, sizeof(s), 1, pf);

	fclose(pf);
	pf = NULL;
	return 0;
}
size_t fread ( void* ptr, size_t size, size_t count, FILE* stream );

从流中读取count个大小为size的数据到ptr

int main()
{
	stu s = { 0 };
	FILE* pf = fopen("data.txt", "rb");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}

	fread(&s, sizeof(s), 1, pf);

	fclose(pf);
	pf = NULL;
	return 0;
}

5.2 对比一组函数

函数名 应用场景
scanf/printf 针对标准输入/输出流
fscanf/fprintf 针对所以输入/输出流
sscanf/sprintf 针对字符串

六、文件的随机读写

6.1 fseek

int fseek ( FILE* stream, long int offset, int origin );

可以根据偏移量和流起始位置,重定位文件指针

流起始位置有三种:

常量名 位置
SEEK_SET 文件开头
SEEK_CUR 文件指针当前位置
SEEK_END 文件结尾
int main()
{
	FILE* pf = fopen("data.txt", "r");

	printf("%c", fgetc(pf));
	printf("%c", fgetc(pf));

	fseek(pf, -3, SEEK_END);

	printf("%c", fgetc(pf));
	printf("%c", fgetc(pf));
	return 0;
}

6.2 ftell

long int ftell ( FILE * stream );

返回当前文件指针相对于文件开头的偏移量

6.3 rewind

void rewind ( FILE * stream );

让文件指针返回文件开头

七、文件读取结束的判定

7.1 是否结束的判定

文本文件读取是否结束:

  • fgetc返回值是否为EOF
  • fgets返回值是否为NULL

二进制文件读取是否结束:

  • fread返回值是否小于实际要读的个数

7.2 结束原因的判定

int feof ( FILE * stream );

判断是否遇到文件末尾(非0代表遇到)

int ferror ( FILE * stream );

判断是否遇到错误(非0代表遇到)


举个例子:

int main()
{
	FILE* pf = fopen("data.txt", "r");
	if (pf == NULL)
	{
		perror("fopen fail");
		return 1;
	}

	int ch = 0;
	while ((ch = fgetc(pf)) != EOF)
	{
		putchar(ch);
	}

	if (feof(pf))
	{
		printf("reach the end of file");
	}
	else if (ferror(pf))
	{
		printf("I/O error while reading");
	}

	fclose(pf);
	pf = NULL;
	return 0;
}

八、文件缓冲区

其实,程序数据区和磁盘之间,并不是直接进行交互的,它们有一个中转站——文件缓冲区。无论是写入数据还是读取数据,都要等待缓冲区充满或者刷新,才能进行传递。
文件操作(你真的会读写文件吗?)_第3张图片
有了文件缓冲区,操作系统才能保持较高效率。要不然读取一个字符,就要打断一次操作系统,那效率将低的无法想象。

#include 
#include 
//VS2019 WIN11环境测试
int main()
{
	FILE*pf = fopen("test.txt", "w");
	fputs("abcdef", pf);//先将代码放在输出缓冲区
	printf("睡眠10秒-已经写数据了,打开test.txt⽂件,发现⽂件没有内容\n");
	Sleep(10000);
	printf("刷新缓冲区\n");
	fflush(pf);//刷新缓冲区时,才将输出缓冲区的数据写到⽂件(磁盘)
	//注:fflush 在⾼版本的VS上不能使⽤了
	printf("再睡眠10秒-此时,再次打开test.txt⽂件,⽂件有内容了\n");
	Sleep(10000);
	fclose(pf);
	//注:fclose在关闭⽂件的时候,也会刷新缓冲区
	pf = NULL;
	return 0;
}

结论:因为有缓冲区的存在,C语言在操作文件的时候,需要刷新缓冲区或者在文件操作结束的时候关闭文件。如果不做,可能导致读写文件的问题。

看到这里了还不给博主扣个: ⛳️ 点赞☀️收藏 ⭐️ 关注! ❤️
拜托拜托这个真的很重要! 你们的点赞就是博主更新最大的动力! 有问题可以评论或者私信呢秒回哦。

你可能感兴趣的:(零基础学C语言,c语言,开发语言,文件操作,深度学习)