Seurat小提琴图为什么有的只有点儿?

library(Seurat)
library(SeuratData)
levels(pbmc3k.final)

[1] "Naive CD4 T"  "Memory CD4 T" "CD14+ Mono"   "B"            "CD8 T"       
[6] "FCGR3A+ Mono" "NK"           "DC"           "Platelet"    


VlnPlot(pbmc3k.final, "CD4",slot = "data")

作为一个生物信息工程师,看到这样的图,请解释。

为什么CD14+ Mono和 Memory CD4 T 有怎么多的点,却没有小提琴呢?

那, 我们要看看作图细节了。

> VlnPlot
function (object, features, cols = NULL, pt.size = 1, idents = NULL, 
    sort = FALSE, assay = NULL, group.by = NULL, split.by = NULL, 
    adjust = 1, y.max = NULL, same.y.lims = FALSE, log = FALSE, 
    ncol = NULL, combine = TRUE, slot = "data", ...) 
{
    return(ExIPlot(object = object, type = "violin", features = features, 
        idents = idents, ncol = ncol, sort = sort, assay = assay, 
        y.max = y.max, same.y.lims = same.y.lims, adjust = adjust, 
        pt.size = pt.size, cols = cols, group.by = group.by, 
        split.by = split.by, log = log, slot = slot, combine = combine, 
        ...))
}

`

可惜并没有细节,再看ExIPlot。

> ExIPlot
Error: object 'ExIPlot' not found

不是显式函数啊。我们通过debug的方式进入函数内部。

> debug(VlnPlot)
> VlnPlot(pbmc3k.final, "CD4",slot = "data")
debugging in: VlnPlot(pbmc3k.final, "CD4", slot = "data")
debug: {
    return(ExIPlot(object = object, type = "violin", features = features, 
        idents = idents, ncol = ncol, sort = sort, assay = assay, 
        y.max = y.max, same.y.lims = same.y.lims, adjust = adjust, 
        pt.size = pt.size, cols = cols, group.by = group.by, 
        split.by = split.by, log = log, slot = slot, combine = combine, 
        ...))
}
Browse[2]> 
debug: return(ExIPlot(object = object, type = "violin", features = features, 
    idents = idents, ncol = ncol, sort = sort, assay = assay, 
    y.max = y.max, same.y.lims = same.y.lims, adjust = adjust, 
    pt.size = pt.size, cols = cols, group.by = group.by, split.by = split.by, 
    log = log, slot = slot, combine = combine, ...))
Browse[2]> ExIPlot
function (object, features, type = "violin", idents = NULL, ncol = NULL, 
    sort = FALSE, assay = NULL, y.max = NULL, same.y.lims = FALSE, 
    adjust = 1, cols = NULL, pt.size = 0, group.by = NULL, split.by = NULL, 
    log = FALSE, combine = TRUE, slot = "data", ...) 
{
    assay <- assay %||% DefaultAssay(object = object)
    DefaultAssay(object = object) <- assay
    ncol <- ncol %||% ifelse(test = length(x = features) > 9, 
        yes = 4, no = min(length(x = features), 3))
    data <- FetchData(object = object, vars = features, slot = slot)
    features <- colnames(x = data)
    if (is.null(x = idents)) {
        cells <- colnames(x = object)
    }
    else {
        cells <- names(x = Idents(object = object)[Idents(object = object) %in% 
            idents])
    }
    data <- data[cells, , drop = FALSE]
    idents <- if (is.null(x = group.by)) {
        Idents(object = object)[cells]
    }
    else {
        object[[group.by, drop = TRUE]][cells]
    }
    if (!is.factor(x = idents)) {
        idents <- factor(x = idents)
    }
    if (is.null(x = split.by)) {
        split <- NULL
    }
    else {
        split <- object[[split.by, drop = TRUE]][cells]
        if (!is.factor(x = split)) {
            split <- factor(x = split)
        }
        if (is.null(x = cols)) {
            cols <- hue_pal()(length(x = levels(x = idents)))
            cols <- Interleave(cols, InvertHex(hexadecimal = cols))
        }
        else if (length(x = cols) == 1 && cols == "interaction") {
            split <- interaction(idents, split)
            cols <- hue_pal()(length(x = levels(x = idents)))
        }
        else {
            cols <- Col2Hex(cols)
        }
        if (length(x = cols) < length(x = levels(x = split))) {
            cols <- Interleave(cols, InvertHex(hexadecimal = cols))
        }
        cols <- rep_len(x = cols, length.out = length(x = levels(x = split)))
        names(x = cols) <- sort(x = levels(x = split))
    }
    if (same.y.lims && is.null(x = y.max)) {
        y.max <- max(data)
    }
    plots <- lapply(X = features, FUN = function(x) {
        return(SingleExIPlot(type = type, data = data[, x, drop = FALSE], 
            idents = idents, split = split, sort = sort, y.max = y.max, 
            adjust = adjust, cols = cols, pt.size = pt.size, 
            log = log, ...))
    })
    label.fxn <- switch(EXPR = type, violin = ylab, ridge = xlab, 
        stop("Unknown ExIPlot type ", type, call. = FALSE))
    for (i in 1:length(x = plots)) {
        key <- paste0(unlist(x = strsplit(x = features[i], split = "_"))[1], 
            "_")
        obj <- names(x = which(x = Key(object = object) == key))
        if (length(x = obj) == 1) {
            if (inherits(x = object[[obj]], what = "DimReduc")) {
                plots[[i]] <- plots[[i]] + label.fxn(label = "Embeddings Value")
            }
            else if (inherits(x = object[[obj]], what = "Assay")) {
                next
            }
            else {
                warning("Unknown object type ", class(x = object), 
                  immediate. = TRUE, call. = FALSE)
                plots[[i]] <- plots[[i]] + label.fxn(label = NULL)
            }
        }
        else if (!features[i] %in% rownames(x = object)) {
            plots[[i]] <- plots[[i]] + label.fxn(label = NULL)
        }
    }
    if (combine) {
        combine.args <- list(plots = plots, ncol = ncol)
        combine.args <- c(combine.args, list(...))
        if (!"legend" %in% names(x = combine.args)) {
            combine.args$legend <- "none"
        }
        plots <- do.call(what = "CombinePlots", args = combine.args)
    }
    return(plots)
}


这一层函数也没讲小提琴如何画的,再看SingleExIPlot。

Browse[2]> SingleExIPlot
function (data, idents, split = NULL, type = "violin", sort = FALSE, 
    y.max = NULL, adjust = 1, pt.size = 0, cols = NULL, seed.use = 42, 
    log = FALSE) 
{
    if (!is.null(x = seed.use)) {
        set.seed(seed = seed.use)
    }
    if (!is.data.frame(x = data) || ncol(x = data) != 1) {
        stop("'SingleExIPlot requires a data frame with 1 column")
    }
    feature <- colnames(x = data)
    data$ident <- idents
    if ((is.character(x = sort) && nchar(x = sort) > 0) || sort) {
        data$ident <- factor(x = data$ident, levels = names(x = rev(x = sort(x = tapply(X = data[, 
            feature], INDEX = data$ident, FUN = mean), decreasing = grepl(pattern = paste0("^", 
            tolower(x = sort)), x = "decreasing")))))
    }
    if (log) {
        noise <- rnorm(n = length(x = data[, feature]))/200
        data[, feature] <- data[, feature] + 1
    }
    else {
        noise <- rnorm(n = length(x = data[, feature]))/1e+05
    }
    if (all(data[, feature] == data[, feature][1])) {
        warning(paste0("All cells have the same value of ", feature, 
            "."))
    }
    else {
        data[, feature] <- data[, feature] + noise
    }
    axis.label <- "Expression Level"
    y.max <- y.max %||% max(data[, feature])
    if (is.null(x = split) || type != "violin") {
        vln.geom <- geom_violin
        fill <- "ident"
    }
    else {
        data$split <- split
        vln.geom <- geom_split_violin
        fill <- "split"
    }
    switch(EXPR = type, violin = {
        x <- "ident"
        y <- paste0("`", feature, "`")
        xlab <- "Identity"
        ylab <- axis.label
        geom <- list(vln.geom(scale = "width", adjust = adjust, 
            trim = TRUE), theme(axis.text.x = element_text(angle = 45, 
            hjust = 1)))
        jitter <- geom_jitter(height = 0, size = pt.size)
        log.scale <- scale_y_log10()
        axis.scale <- ylim
    }, ridge = {
        x <- paste0("`", feature, "`")
        y <- "ident"
        xlab <- axis.label
        ylab <- "Identity"
        geom <- list(geom_density_ridges(scale = 4), theme_ridges(), 
            scale_y_discrete(expand = c(0.01, 0)), scale_x_continuous(expand = c(0, 
                0)))
        jitter <- geom_jitter(width = 0, size = pt.size)
        log.scale <- scale_x_log10()
        axis.scale <- function(...) {
            invisible(x = NULL)
        }
    }, stop("Unknown plot type: ", type))
    plot <- ggplot(data = data, mapping = aes_string(x = x, y = y, 
        fill = fill)[c(2, 3, 1)]) + labs(x = xlab, y = ylab, 
        title = feature, fill = NULL) + theme_cowplot() + theme(plot.title = element_text(hjust = 0.5))
    plot <- do.call(what = "+", args = list(plot, geom))
    plot <- plot + if (log) {
        log.scale
    }
    else {
        axis.scale(min(data[, feature]), y.max)
    }
    if (pt.size > 0) {
        plot <- plot + jitter
    }
    if (!is.null(x = cols)) {
        if (!is.null(x = split)) {
            idents <- unique(x = as.vector(x = data$ident))
            splits <- unique(x = as.vector(x = data$split))
            labels <- if (length(x = splits) == 2) {
                splits
            }
            else {
                unlist(x = lapply(X = idents, FUN = function(pattern, 
                  x) {
                  x.mod <- gsub(pattern = paste0(pattern, "."), 
                    replacement = paste0(pattern, ": "), x = x, 
                    fixed = TRUE)
                  x.keep <- grep(pattern = ": ", x = x.mod, fixed = TRUE)
                  x.return <- x.mod[x.keep]
                  names(x = x.return) <- x[x.keep]
                  return(x.return)
                }, x = unique(x = as.vector(x = data$split))))
            }
            if (is.null(x = names(x = labels))) {
                names(x = labels) <- labels
            }
        }
        else {
            labels <- levels(x = droplevels(data$ident))
        }
        plot <- plot + scale_fill_manual(values = cols, labels = labels)
    }
    return(plot)
}


我们看到核心了,ggplot的代码。

geom <- list(vln.geom(scale = "width", adjust = adjust, 
            trim = TRUE), theme(axis.text.x = element_text(angle = 45, 
            hjust = 1)))
        jitter <- geom_jitter(height = 0, size = pt.size)
        log.scale <- scale_y_log10()
        axis.scale <- ylim

这句子写的真美啊。

那我们就要来试一下了。记得退出debug模式哦。

undebug(VlnPlot)
p<-VlnPlot(pbmc3k.final, "CD4",slot = "data")
#ggplot对象中记录了一张图的所有信息,为了方便演示,我们只取数据出来。

head(p$data)  # 从图中抠数据,学会了吗?

                         CD4        ident
AAACATACAACCAC  1.370958e-05 Memory CD4 T
AAACATTGAGCTAC -5.646982e-06            B
AAACATTGATCAGC  3.631284e-06 Memory CD4 T
AAACCGTGCTTCCG  6.328626e-06   CD14+ Mono
AAACCGTGTATGCG  4.042683e-06           NK
AAACGCACTGGTAC -1.061245e-06 Memory CD4 T

原汁原味的啊:

ggplot(p$data,aes(ident,CD4)) + geom_violin() + theme_bw()

啥也没有:


加个抖动吧:

ggplot(p$data,aes(ident,CD4)) + geom_violin()  + geom_jitter()+ theme_bw()

这下有点了。所以我们看到的点有左右的区分其实是抖出来的,本身数据的点应该是在一条直线上。然而,小提琴呢?

ggplot(p$data,aes(ident,CD4)) + geom_violin(scale = "width", adjust =1, trim = TRUE)  + geom_jitter()+ theme_bw()

这里我们用seurat内部绘制小提琴图的方式还原了我们问题:为什么CD14+ Mono和 Memory CD4 T 有怎么多的点,却没有小提琴呢?经过上面演示我们知道,其实默认的情况下,我们的数据是都没有小提琴的。所以,当务之急是抓紧时间看看geom_violin的帮助文档。

?geom_violin
?geom_violin
?geom_violin

好了,我们知道一个关键的参数scale = "width"导致了这种局面,其他没有出现小提琴的应该是零值比例太多。

作为好奇,我们看看改一下adjust会有什么改变。

ggplot(p$data,aes(ident,CD4)) + geom_violin(scale = "width", adjust =.5, trim = TRUE)  + geom_jitter()+ theme_bw()

腰变细了,好玩。

既然已经基本锁定问题,我们如何画出都有小提琴的小提琴图呢?也许可以用的方法之一就是,数据过滤。

VlnPlot(subset(pbmc3k.final,CD4 > 0 ), "CD4")+ theme_bw()

什么?
改一下腰围?

VlnPlot(subset(pbmc3k.final,CD4 > 0 ), "CD4",adjust = .2)+ theme_bw()

Seurat小提琴图为什么有的只有点儿? 那是因为还有更多的点没忽视。

补充:小提琴按照表达量着色。

首先需要明白的是这里的颜色是什么意义?这里给一个按照平均表达量来为小提琴着色的解决方案。

library(SeuratData)
library(ggplot2)
p1 <- VlnPlot(subset(pbmc3k.final,CD4 > 0 ), "CD4")+ theme_bw()
head(p1$data)
                    CD4        ident
AAATCAACCCTATT 1.015898 FCGR3A+ Mono
AAATCAACTCGCAA 1.516758 Memory CD4 T
AAATGTTGTGGCAT 2.109459   CD14+ Mono
AACAAACTCATTTC 1.721230  Naive CD4 T
AACATTGATGGGAG 1.997160 FCGR3A+ Mono
AACCTACTGTGAGG 1.015209   CD14+ Mono

计算平均表达量并绘图。


p1$data %>%  group_by(ident) %>% mutate(meanse=mean(CD4)) -> data_long1

head(data_long1)
# A tibble: 6 x 3
# Groups:   ident [4]
    CD4 ident        meanse
            
1  1.02 FCGR3A+ Mono   1.41
2  1.52 Memory CD4 T   1.59
3  2.11 CD14+ Mono     1.73
4  1.72 Naive CD4 T    1.72
5  2.00 FCGR3A+ Mono   1.41
6  1.02 CD14+ Mono     1.73

data_long1 %>% 
  ggplot(., aes(ident, CD4)) +
  geom_violin(aes(fill = meanse),scale = "width")  +
  theme_bw()+scale_fill_gradient(low="green",high = "red")

你可能感兴趣的:(Seurat小提琴图为什么有的只有点儿?)