源内容参考:https://www.bilibili.com/video/BV11U4y1k7zn/?spm_id_from=333.337.search-card.all.click&vd_source=61654d4a6e8d7941436149dd99026962
这种情况下,价带中没有空能态可供电子占据,因此电子在价带中不能移动。在导带中虽然有空能态,但是没有电子。因此,在温度为0 K时半导体材料中不存在可供导电的载流子。
i ℏ ∂ ψ ∂ t = − ℏ 2 2 m ∂ 2 ψ ∂ r 2 + V ψ i\hbar\frac{\partial \psi}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial r^2}+V\psi iℏ∂t∂ψ=−2mℏ2∂r2∂2ψ+Vψ
从SE可以看出,势场的存在会对波产生作用,从而影响波的状态
对于没有被任何势场影响的粒子,称为自由粒子。自由粒子的波矢的取值是连续的,相应的,其能量的取值也是连续的,这种状态称为“散射态”。
当粒子被束缚在某个势场中时,其能量低于势垒,因此在远离势垒的位置出现的概率为零,称为束缚态。
处于束缚态中的粒子的波矢k的取值是分立的,对应的能量E的取值也是分立的。
晶体中的原子具有周期性的排列结构,这种原子的周期性排列会形成周期性势场,其势场强度约为 1 0 8 V / cm 10^8~ V/\text{cm} 108 V/cm
电子在周期性势场中的波函数可用布洛赫定理求解含周期性势场的薛定谔方程求得。
电子在周期性势场中运动的波函数,其振幅随位置周期性变化,且变化周期与晶格周期相同。因此晶格中的电子是以一个被调幅的平面波在晶体中传播,即周期性势场的作用是对平面波进行了调幅,并且由于周期性势场的微扰导致 E ( k ) E(k) E(k)函数在 k = n π / a k=n\pi/a k=nπ/a时断开,能量出现不连续,形成一系列允带(存在电子的能态,价带以及导带)。允带出现的区域称为“布里渊区”,每个布里渊区对应一个能带,禁带中不存在电子能态,其宽度取决于周期性势场的具体形式
原子在形成分子的过程中,由于原子相互靠近,导致电子的波函数产生交叠,由此会发生“轨道杂化”。杂化后,轨道的数目不变,但其在空间的方向和分布以及能级会发生改变。
对于半导体材料,由于轨道杂化的作用,会使得其能级分裂成两个能带,即导带和价带。
禁带中没有可供电子占据的能态,于是我们可通过给电子赋予能量的方式(加热或光照)使得价带中的电子跨过禁带跃迁到导带称为导电电子。要使得电子从价带跃迁到导带,就要给电子额外的能量,这个能量的最小值就是使价带顶的电子跃迁到导带底所需要的能量,称为禁带宽度。
不难看出,禁带宽度越宽的材料需要的能量越大。因此材料可根据导电性分为导体、半导体和绝缘体。
这种情况下电子根本不用额外能量越过禁带就有空能态可供占据,故金属是良好的导体。
对于绝缘体,其禁带宽度很宽,比如室温下半导体硅的禁带宽度为1.1 eV,而绝缘体金刚石的禁带宽度为5 eV。对于半导体,其禁带宽度小于绝缘体。
一般将禁带宽度大于2.3 eV的半导体材料称为宽禁带半导体材料。主要有SiC、金刚石、II族氧化物、II族硫化合物、II族硒化合物、III族氮化合物以及这些材料的合金。(目前流行说第三代半导体本质上是禁带宽度更大的半导体,这些半导体材料禁带宽度大,热导率高,介电常数低,电子漂移饱和速度高等,适用于高频、高功率、高温、抗辐射以及高集成度器件。
禁带宽度是随温度变化的,随着温度升高,禁带宽度按如下函数的形式减小:
E g ( T ) = E g ( 0 ) − α T 2 T + β E_g(T)=E_g(0)-\frac{\alpha T^2}{T+\beta} Eg(T)=Eg(0)−T+βαT2
α , β \alpha,\beta α,β是相关的温度系数
一些半导体的导带底不在波矢的原点(k=0)位置,因此电子的能量从价带顶跃迁到导带底会导致波矢发生改变(例如:硅),这种材料称为间接禁带半导体。而跃迁不伴随波矢改变的材料(例如:砷化镓)称为直接禁带半导体。
所以,对于光电器件(例如:LED,LD等),要么选择直接禁带半导体作为材料。当选择间接禁带半导体作为材料的时候,需要使电子通过禁带中的缺陷或杂质能级发生垂直间接跃迁,这种情况下由于缺陷或杂质能级是位于禁带中,垂直间接跃迁时释放的能量小于禁带宽度,所以释放的光子的能量较低。
对于III~V族化合物半导体,当其组分发生变化时能带结构也会发生变化。既然有空能态的存在是载流子存在的必要条件,那么我们就必须研究一下材料中的能态分布情况。
每一组 k x , k y , k z k_x,k_y,k_z kx,ky,kz确定一个波矢 k k k,即确定一种准自由电子的运动状态。以这三个基矢张成的空间就是k空间。以k的各个取值画出平面,平面相交出来的每个六面体的顶点就表示每个粒子的态。六面体的体积就是每个态在k空间所占的体积。由于 k x , k y , k z k_x,k_y,k_z kx,ky,kz的取值间隔相等,所以波矢密度在k空间分布是均匀的。
等能面是k空间具有相同能量的点构成的曲面。根据k空间与等能面的概念可知:
能态数目=波矢密度×等能面间体积
g c ( E ) = 4 π V ( 2 m n ∗ ) 3 / 2 h 3 ( E − E c ) 1 / 2 g_c(E)=4\pi V\frac{(2m^*_n)^{3/2}}{h^3}(E-E_c)^{1/2} gc(E)=4πVh3(2mn∗)3/2(E−Ec)1/2
g v ( E ) = 4 π V ( 2 m n ∗ ) 3 / 2 h 3 ( E v − E ) 1 / 2 g_v(E)=4\pi V\frac{(2m^*_n)^{3/2}}{h^3}(E_v-E)^{1/2} gv(E)=4πVh3(2mn∗)3/2(Ev−E)1/2
其中 m ∗ m^* m∗表示有效质量
在热平衡条件下,从大量电子的整体来看,电子填充某一能量状态的概率服从费米-狄拉克统计分布:
f ( E ) = 1 e ( E − E F ) / k B T + 1 f(E)=\frac{1}{e^{(E-E_F)/k_BT}+1} f(E)=e(E−EF)/kBT+11
当温度高于0 K时,低于费米能级的各个能态被电子占据的概率大于1/2,等于费米能级的能态被占据的概率为1/2,高于费米能级的各能态被电子占据的概率小于1/2。因此费米能级在计算电子或空穴的浓度时起到标杆作用。
当 ( E − E F ) > > k B T (E-E_F)>>k_BT (E−EF)>>kBT时,分母中的+1便可忽略,此时F-D分布函数可写为玻尔兹曼统计分布:
f ( E ) = 1 e ( E − E F ) / k B T f(E)=\frac{1}{e^{(E-E_F)/k_BT}} f(E)=e(E−EF)/kBT1
半导体在大多数情况下,费米能级位于禁带中,且其到导带底或价带顶的距离远大于 k B T k_BT kBT,因此对半导体中最常研究的导带或价带中所有的量子态来说,电子或空穴都可以用玻尔兹曼统计分布描述,将能够用玻尔兹曼统计分布描述的半导体称为非简并半导体。
通常情况下,晶体周期性势场的强度相当于 1 0 8 V / c m 10^8 ~V/cm 108 V/cm,而外加场(电场、磁场、掺入晶体的杂质势场等),一般很难达到这种程度,因此外加场一般比周期势场弱得多。在这种情况下,可以认为在外加场的作用下,晶体的能带结构和电子的波函数基本不变,外加场的作用只是让电子能够从外场吸收能量,其能量的改变通过波矢k的改变来实现,但其状态的变化仍旧是在原来的能带结构的基础上,即电子不发生跃迁,运动只限于一个能带内。
在外场较弱,不考虑电子的干涉、衍射以及碰撞等情况下,可以把晶体中电子在外场中的运动当做准经典粒子来处理。当晶体存在外加场时,晶体中的电子除了受到内部周期性势场的作用以外,还受到外加场的作用。因此电子的加速度等于外加场和内部周期性势场综合作用的结果。
将内部势场的作用体现在有效质量中,而有效质量通常可以通过实验测定。由此,在计算电子受外场时的运动可以不必再涉及内场的作用,而直接引入有效质量进行计算,引入有效质量后,如果可以计算出有效质量的大小,便可确定能带极值附近的 E ( k ) E(k) E(k)与 k k k的关系。有效质量既可为正也可为负,在能带底附近的电子有效质量总为正值,在能带顶附近的电子有效质量总是负值。一般情况下,电子的有效质量与空穴的有效质量并不相等。
虽然本征半导体通过热激发就可以产生载流子,但通常不能采用本征半导体来制作器件,这主要是因为:
当温度升高时,系统由基态变为激发态,电子受到热激发,室温下激发热能约为0.026 eV,远小于费米能(1.5 eV~15 eV),因此对于比费米能级低很多的电子是无法获得足够的能量来跳出费米能级的。这意味着即便是热激发,也只能使费米能级附近的小部分电子受到影响,而离费米能级较远的电子仍保持原来(0 K)时的状态。由此可见,对于本征半导体而言,在室温下由热激发而产生的载流子数量并不多,因此我们需要一种载流子浓度更高且可控、稳定性高的半导体材料——掺杂半导体。
通过在本征半导体中掺入杂质的方式,可以在半导体的禁带中引入杂质能级。杂质电离后,可以提供电子或空穴,从而改变半导体的导电性能。距离导带底或价带顶的能量差,便是杂质电离所需要的能量,其远小于禁带宽度。因此室温下一般掺入的杂质基本都电离了,这意味着我们需要载流子浓度是多少就掺杂等浓度的杂质即可。可在Si或者Ge中掺入V族元素,V族元素电离所需要的能量远小于禁带宽度。(V族元素杂质在Si或Ge中的电离能分别约为0.04~0.05 eV和0.01 eV;室温下Si和Ge的禁带宽度分别为1.12 eV和0.66 eV)。
V族元素电离后能够提供导电电子,从而增强导电能力,这种主要依靠电子导电的半导体称为N型半导体,掺入的V族元素称为施主杂质,其能级为施主杂质能级。
掺入III族元素电离后能够提供导电空穴,这种主要依靠空穴导电的半导体称为P型半导体,掺入的III族元素称为受主杂质,其能级为受主杂质能级。