- 论文笔记:Enhancing Sentence Embeddings in Generative Language Models
UQI-LIUWJ
论文阅读语言模型人工智能
2024ICIC1INTRO对于文本嵌入,过去几年的相关研究主要集中在像BERT和RoBERTa这样的判别模型上。这些模型固有的语义空间各向异性,往往需要通过大量数据集进行微调,才能生成高质量的句子嵌入。——>需要较大的训练批次,这会消耗大量的计算资源一些前沿的工作将焦点转向了最近开发的生成模型,期望利用其先进的文本理解能力,直接对输入句子进行编码,而无需额外的反向传播由于句子表示和自回归语言建模
- 【FreeRTOS】中断机制
佳大先生
FreeRTOSesp32esp-idffreertos嵌入式软件
【FreeRTOS】之中断机制在FreeRTOS中,中断是实现实时性必要的操作。一款芯片的中断涉及到硬件触发,软件触发,软件中断处理。所以FreeRTOS的中断机制其实不好单独拿出来看。FreeRTOS关于中断能做到的是提供一套专门在中断服务函数中使用的API,比如:xQueueSendToBack()对应xQueueSendToBackFromISR()注意:下文有对于指令集的区分,主要以ESP
- DeepSeep开源周,第三天:DeepGEMM是啥?
程序员差不多先生
pytorch
DeepGEMM是Deepseek开源的一个高性能矩阵乘法优化库,专为深度学习场景设计。矩阵乘法(GEMM)是深度学习模型的核心运算(如全连接层、卷积层等),其性能直接影响训练和推理效率。DeepGEMM通过算法优化、硬件指令集加速和并行计算技术,显著提升计算速度,适用于GPU、CPU等硬件平台。对开发者的用处性能提升优化计算密集型任务(如LLM训练/推理),降低延迟,提升吞吐量。支持混合精度计算
- spring JdbcTemplate 在itest 开源测试管理项目中的浅层(5个使用场景)封装
Codes_AndyLiu
软件测试开源测试管理软件
导读:主要从4个方面来阐述,1:背景;2:思路;3:代码实现;4:使用一:封装背景,在做项目的时候,用的JPA,有些复杂查询,比如报表用原生的JdbcTemplate,很不方便;传参也不方便,如果参数多;需要增加分页功能,以及结果集自动转对像等5个常用功能,见第4节。下面两个图是开源测试管理软件itest的统计功能,因为SQL复杂,有些有200行,所以才有后面的JdbcTemplateWrappe
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-validator.py
红色的山茶花
YOLO笔记深度学习
validator.pyultralytics\engine\validator.py目录validator.py1.所需的库和模块2.classBaseValidator:1.所需的库和模块#UltralyticsAGPL-3.0License-https://ultralytics.com/license#检查模型在数据集的测试或验证分割上的准确性。#用法-格式:#$yolomode=valm
- 数字人批量生成视频
李lrh9166
音视频
(形象克隆✔声音克隆✔智能剪辑✔智能文案✔音频驱动✔矩阵发布多平台)只需要录制一个1234567的视频,就可以批量生成你的专属数字人视频。集星智影-数字人.layui-anim-downbit{border-radius:0.35rem;
- 零基础学习机器学习分类模型
可喜~可乐
机器学习机器学习学习分类人工智能数据挖掘
下面将带你通过一个简单的机器学习项目,使用Python实现一个常见的分类问题。我们将使用著名的Iris数据集,来构建一个机器学习模型,进行花卉品种的分类。整个过程会包含:原理介绍:机器学习的基本概念。数据加载和预处理:如何加载数据并进行必要的处理。模型训练和评估:使用经典的分类算法——逻辑回归。代码解释:逐步分析代码实现。拓展内容:如何优化和扩展该项目。1.原理介绍1.1机器学习基本概念机器学习(
- 36家主要上市银行绿色信贷余额、绿色信贷占比、资产收益率、不良贷款率等数据 (2007-2019年)
年鉴汇
其他
数据集名称:36家主要上市银行绿色信贷余额、绿色信贷占比、资产收益率、不良贷款率等数据时间范围:2007-2019年数据来源:Wind银行列表:平安银行宁波银行江阴银行张家港行郑州银行青岛银行青农商行苏州银行浦发银行华夏银行民生银行招商银行无锡银行江苏银行杭州银行西安银行南京银行渝农商行常熟银行兴业银行北京银行上海银行农业银行交通银行工商银行长沙银行邮储银行光大银行成都银行紫金银行浙商银行建设银行
- AI人工智能机器学习之监督线性模型
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器监督学习框架下的线性模型,以LinearRegression线性回归和LogisticRegression逻辑回归为示例,从代码层面测试和讲述监督学习中的线性模型。2、监督学习之线性模型-简介监督学习和线性模型是的两个重要概念。监督学习是一种机器学习任务,其中模型在已标记的数据集上进行训练。线性模型是一类通过线性组合输入特征来进行预测的模型。线性模型的基本形式可
- 如何根据企业架构设计IT架构?
自由鬼
IT应用探讨行业发展架构企业架构IT架构
企业IT架构高度匹配企业架构是实现战略目标、提高业务效率和增强组织竞争力的关键。以下是关于企业架构(EnterpriseArchitecture,EA)及其与IT架构设计关系的详细说明:一、什么是企业架构(EA)?企业架构是一种方法论和工具集,用于系统地描述和分析企业的业务、信息、流程和技术,以支持企业的战略目标和业务运营。它是一个全局视角,确保企业内各个部分协同一致。企业架构的核心组成部分(通常
- 乡村振兴背景下县域农业数字化转型的关键要素与持续路径——基于30个案例的模糊集定性比较分析
罗伯特之技术屋
人工智能与智能系统专栏人工智能大数据政务
摘要:县域农业数字化转型是大力推进以县城为重要载体的城镇化建设及实现乡村振兴战略的重要途径。基于TOE理论框架,以我国30个县为案例,运用模糊集定性比较分析(fsQCA)方法探讨技术、组织和环境条件对县域农业数字化转型的组态效应及其持续路径。研究发现:存在驱动高水平县域农业数字化转型的四条路径,分别是以技术基础设施、财政资源供给和社会资本参与为核心条件的全能型,以财政资源供给和社会资本参与为核心条
- Yolov8分割训练自己的数据集记录
小俊俊的博客
yolov8分割训练自己的数据集
Yolov8分割训练自己的数据集记录第一章、标签制作一、安装labelmelabelme安装很简单,直接在终端输入:pipinstalllabelme启用labelme在终端输入:labelme接下来就是标注数据了。实例分割数据标注选择“创建多边形”标注就行。二、json转txt使用labelme标注的label数据格式为json格式,但是yolov8分割使用的依旧是txt格式。需要进行转换。转换
- YOLOv8实例分割训练自己的数据集
NoContours
YOLOpython开发语言
转载https://blog.csdn.net/m0_51530640/article/details/1299752571.利用labelme进行数据标注1.1Labelme安装方法首先安装Anaconda,然后运行下列命令:####################forPython2####################condacreate--name=labelmepython=2.7s
- Qwen2.5 技术报告
三谷秋水
大模型机器学习人工智能语言模型机器学习人工智能
24年12月来自通义千问的论文“Qwen2.5TechnicalReport”。本报告介绍Qwen2.5,这是一系列全面的大语言模型(LLM),旨在满足多样化的需求。与之前的迭代相比,Qwen2.5在预训练和后训练阶段都有显著的改进。在预训练方面,将高质量的预训练数据集从之前的7万亿个token扩展到18万亿个token,为常识、专家知识和推理能力提供坚实的基础。在后训练方面,用超过100万个样本
- 清华大学:DeepSeek-从入门到精通(文件提取附在最后)
浪子西科
opencv数据挖掘人工智能语言模型
《DeepSeek:从入门到精通》团队专业:由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心撰写。内容丰富DeepSeek简介:对DeepSeek的核心概念、目标、功能及应用场景进行解析,指导用户快速上手。核心功能呈现:涵盖文本生成与创作、自然语言理解与分析、编程支持、数据可视化等。使用方法详述:介绍访问平台方式、DeepSeek基本功能、联网搜索与文件上传等操作。从入
- GAN(Generative Adversarial Network)—生成对抗网络
算法资料吧!
深度学习机器学习人工智能
GAN(GenerativeAdversarialNetwork)代表了深度学习中生成建模的尖端方法,通常利用卷积神经网络等架构。生成建模的目标是自主识别输入数据中的模式,使模型能够生成与原始数据集相似的新示例。本文涵盖了您需要了解的有关GAN、GAN架构、GAN的工作原理以及GAN模型类型等的所有信息。目录什么是生成对抗网络?GAN的类型GAN的架构GAN是如何工作的?生成对抗网络(GAN)的应
- kitti数据集【图片、点云、IMU、GPS】话题发布(kitti2bag方式+python源码方式)
liiiuzy
ROS学习python
kitti数据集传感器话题发布一、前期准备工作kitti数据集转bag安装vscode新建工作环境安装opencv-python二、发布图片三、发布点云数据四、整理前两次的代码五、添加汽车图片和摄像头视角常规写法优化写法六、发布IMU七、发布GPS一、前期准备工作kitti数据集转bag如果只是想把kitti数据集转成bag,直接用kiiti2bag指令就可以完成,教程在下面链接中。后文是详细的代
- 代码随想录算法训练营第58天|拓扑排序精讲、dijkstra(朴素版)精讲
Yinems
算法
打卡Day581.拓扑排序精讲2.dijkstra(朴素版)精讲1.拓扑排序精讲题目链接:拓扑排序精讲文档讲解:代码随想录给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。所以拓扑排序是图论中判断有向无环图的常用方法。拓扑排序的过程,有两步,第一步,找到入度为0的节点,加入结果集;第二步,将该节点从图中移
- 【YashanDB 知识库】JDBC 驱动的 date 类型字段结果集调用 getString 方法只返回日期,不返回时分秒
数据库date
问题现象JDBC驱动查询date类型字段,对ResultSet直接调用getString方法,驱动返回的字符串只有日期,没有时分秒。如上Java代码片断只返回YYYY-MM-DD类型的字符串,没有带时分秒问题的风险及影响返回的字符串只有日期,没有时分秒,影响业务逻辑。问题影响的版本所有的YashanDB驱动。问题发生原因YashanDB驱动内部实现问题。解决方法及规避方式使用rs.getTimes
- DeepSeek Coder
百态老人
人工智能大数据笔记
DeepSeekCoder是由DeepSeekAI推出的一系列代码生成模型,旨在解决编程中的各种任务,如代码生成、补全、调试和优化等。以下是对该模型的详细分析:模型背景与特点模型规模与训练数据:DeepSeekCoder系列模型从头开始训练,覆盖了超过80种编程语言,总参数量从1B到33B不等,其中包含基础版和指令调优版。模型基于高质量的代码数据集进行训练,包含约2万亿个token,其中87%为代
- 【RAG系列】文字的数字化分身 - 向量嵌入的魔法世界
什么都想学的阿超
原理概念#深度学习深度学习人工智能RAG
文字的数字化分身-向量嵌入的魔法世界文字向量编码器数字分身语义空间相似度计算代数运算关系推理一、认知革命:文字的数字基因工程1.1文字GPS坐标系想象每个词语都是银河系中的星球,向量坐标就是它们的星际坐标:经度:语义维度(动物/植物/人造物)纬度:情感维度(积极/中性/消极)高度:抽象维度(具体/抽象)#词语向量可视化示例words=["国王","王后","男人","女人","电脑"]embedd
- 基于深度学习的行人跌倒检测系统:UI 界面 + YOLOv5 + 数据集详解
深度学习&目标检测实战项目
深度学习uiYOLO目标检测人工智能
引言随着人口老龄化的加剧,老年人的安全问题日益引起重视,跌倒事故是导致老年人伤亡的重要原因之一。为了降低跌倒事故的发生率和伤害程度,行人跌倒检测系统的研究变得愈加重要。本文将详细介绍如何基于YOLOv5构建一个行人跌倒检测系统,并设计相应的用户界面,结合深度学习技术实现实时检测。目录引言系统设计概述数据集准备数据集选择数据预处理data.yaml文件模型选择与训练YOLOv5介绍模型训练步骤用户界
- DeepSeek做3D动画,太猛了
大模型微调教程
3d人工智能自然语言处理零售机器学习大模型deepseek
惊呆了呀,DeepSeek居然还能这么用!DeepSeek+即梦+Tripoai,三个工具5分钟就能做一个类似《哪吒之魔童闹海》的哪吒的专业级3D模型!这次我们将把Deepseek、即梦AI、混元3D、Blender、Mixamo这些强大的AI工具,从无到有,打造出一个全新的萌趣十足的Q版哪吒3D动画。那我们来看看具体有哪些步骤。步骤一:Deepseek创意的“提示词工厂”第一步,我们先从角色的外
- python中的join函数连接dataframe_Python Pandas pandas.DataFrame.join函数方法的使用
weixin_39597868
DataFrame.join(other,on=None,how='left',lsuffix='',rsuffix='',sort=False)源代码在索引或键列上与其他DataFrame连接列。通过传递列表,有效地通过索引连接多个DataFrame对象。参数:other:DataFrame,具有名称字段集的Series,或DataFrame列表索引,应该类似于此列中的一列。如果传递了Serie
- BP算法的python实现 + 男女生分类器
乐宝不是酒
机器学习机器学习神经网络算法
模式识别课上学习了BP算法,并用BP算法实现了男女生分类器,之前因为时间匆忙只是简单记录了一下代码实现,现在重温一下发现代码中还是存在着一些问题,于是修改了一下Bug,也当做是复习吧。本文完整代码和数据集可以到这里:BP算法的python实现获得。BP算法是神经网络中十分经典的算法之一,要把它解释清楚实在需要很多时间,我只想重点讲一下基于BP算法的男女生分类器python实现,理论方面推荐看知乎大
- Tensorflow2.x框架-神经网络八股扩展-acc曲线与loss曲线
诗雨时
loss/loss可视化,可视化出准确率上升、损失函数下降的过程博主微信公众号(左)、Python+智能大数据+AI学习交流群(右):欢迎关注和加群,大家一起学习交流,共同进步!目录摘要一、acc曲线与loss曲线二、完整代码摘要loss/loss可视化,可视化出准确率上升、损失函数下降的过程一、acc曲线与loss曲线history=model.fit(训练集数据,训练集标签,batch_siz
- 团体程序设计天梯赛-练习集——L1-052 2018我们要赢
SY师弟
GPLT天梯赛算法c语言数据结构c++PTAGPLT团体程序设计天梯赛
前言这个题看题目有点年代感了,2018是有啥大事来着吗?像一颗海草海草,随风飘摇哈哈哈,下面看看题目L1-0522018我们要赢2018年天梯赛的注册邀请码是“2018wmyy”,意思就是“2018我们要赢”。本题就请你用汉语拼音输出这句话。输入格式:本题没有输入。输出格式:在第一行中输出:“2018”;第二行中输出:“wo3men2yao4ying2!”。输入样例:无输出样例:2018wo3me
- 揭秘波士顿房价密码:从经典数据集到线性回归实战
珠峰日记
线性回归算法回归机器学习深度学习
引言波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“HelloWorld”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型。在机器学习领域,预测问题是一个核心研究方向,而房价预测作为其中的经典回归问题备受关注。波士顿房价数据集包含了与波士顿地区房屋相关的多种特征信息,通过
- 第三讲-神经网络八股
loveysuxin
Tensorflowtensorflow
一、搭建神经网络六部法tf.keras搭建神经网络六部法1、import相关模块 2、train,test #训练集、测试集3、model=tf.keras.models.Sequential #逐层搭建网络结构4、model.compile #配置训练方法,选择训练使用的优化器、损失函数和最终评价指标5、model.fit #执行训练过程,告知训练集和测试集的输入值和标签、每个batc
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一