HashMap 源码分析

源码分析原因

因为面试一致都问,有点烦,所以为了加深印象。

源码版本
JDK 1.8

JDK 1.8 对 HashMap 的修改:

  1. 添加 红黑二叉树 数据结构, 代替链表结构;
    目的:降低冲突寻址复杂度。
  2. hash 方法 高16位 与 低16位做 ^ (异或)运算;
    目的:充分利用hashcode,为了达到更好的散列效果。

静态常量

源码
    /**
     * The default initial capacity - MUST be a power of two.
     * HashMap默认容量为16,必须是二次幂。
     * 为什么必须是二次幂?
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     * HashMap最大容量,默认为2的30次方;
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     *  默认负载因子=0.75, 可以在构造器配置该因子。
     *  负载因子 = 总键值对数 / 箱子个数
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     * 链表转红黑二叉树的阀值, 当节点冲突 >8 时,转红黑二叉树。
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     * 红黑二叉树转链表的阀值, 当树的节点<6, 转链表。
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     * 在转变成树之前,还会有一次判断,只有键值对数量大于 64 才会发生转换。
     * 这是为了避免在哈希表建立初期,多个键值对恰好被放入了同一个链表中而导致不必要的转化
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

对象属性

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     *  hash 表的存储引用
     */
    transient Node[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     * 缓存 entry 集合
     */
    transient Set> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     *  hash 表的大小(键值对个数)
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * HashMap被改变的次数
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     * 加载因子大小
     * @serial
     */
    final float loadFactor;

主要静态内部类

1. Node 节点类

/**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     * 常用的 基础 Hash 桶节点(链表节点)
     */
    static class Node implements Map.Entry {
        final int hash; // 哈希值
        final K key;  // key 值
        V value; // value 值
        Node next; // 链表下一个节点

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

2. TreeNode 叶子节点类

后面单独写一篇详细介绍TreeNode的,暂时理解为红黑二叉树。

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     */
    static final class TreeNode extends LinkedHashMap.Entry {
        TreeNode parent;  // red-black tree links (父节点)
        TreeNode left; // 左节点
        TreeNode right; // 右节点
        TreeNode prev;    // needed to unlink next upon deletion
        boolean red; // 红黑标识
        TreeNode(int hash, K key, V val, Node next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         * 根节点方法
         */
        final TreeNode root() {}

        /**
         * Ensures that the given root is the first node of its bin. 
         */
        static  void moveRootToFront(Node[] tab, TreeNode root) {}

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         */
        final TreeNode find(int h, Object k, Class kc) {}

        /**
         * Calls find for root node.
         */
        final TreeNode getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         */
        static int tieBreakOrder(Object a, Object b) {}

        /**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify(Node[] tab) {}

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node untreeify(HashMap map) {}

        /**
         * Tree version of putVal.
         */
        final TreeNode putTreeVal(HashMap map, Node[] tab,
                                       int h, K k, V v) {}

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         */
        final void removeTreeNode(HashMap map, Node[] tab,
                                  boolean movable) {}

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap map, Node[] tab, int index, int bit) {}

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR

        static  TreeNode rotateLeft(TreeNode root,
                                              TreeNode p) {}

        static  TreeNode rotateRight(TreeNode root,
                                               TreeNode p) {}

        static  TreeNode balanceInsertion(TreeNode root,
                                                    TreeNode x) {}

        static  TreeNode balanceDeletion(TreeNode root,
                                                   TreeNode x) {}

        /**
         * Recursive invariant check
         */
        static  boolean checkInvariants(TreeNode t) {}
    }

关键方法

1. hash 方法

    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     * 生成 Hash 值生成方法。
     * h = key.hashCode(); // 获取 key 的 hash 值
     * h >>> 16 ; // 无符号右移 16位
     * ^ 异或操作, 相同为0,不同为1.
     * 右移异或计算的目的: 让高16位数据参加到散列计算;
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

JDK8 修改1: 对 key的 hash 值做 高低16位做异或运算;

2. put、putVal 方法(Hash Map 插入数据 过程)

/**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with key, or
     *         null if there was no mapping for key.
     *         (A null return can also indicate that the map
     *         previously associated null with key.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key 
     * @param value the value to put 
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        // tab: table 的临时引用
        // p: point 节点临时引用
        // n: Hash 表大小
        // i: index 索引位置
        Node[] tab; Node p; int n, i;
        // 1. 初始化空得表
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 2. 根据 hash 值获取数据的索引 i ;
        //    i = (n - 1) & hash;
        //    表大小 & hash 值, 做 & 操作 去掉高位并保证 i < n;
        if ((p = tab[i = (n - 1) & hash]) == null)
            // 2.1 table 的 i 节点没有值,直接初始化 Node 占用 tab[i];
            tab[i] = new Node(hash, key, value, null);
        else {
            // 2.2 table 的 i 节点有值, 获取旧值。
            // e: Node 临时引用,用于返回旧的value;
            // k: key 的临时引用
            Node e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                // 2.2.1 当旧的节点 p 与新的 key 完全相等,e 引用保存旧节点值;
                e = p;
            else if (p instanceof TreeNode)
                // 2.2.2 当旧的节点 p 是 红黑二叉树,插入新节点到二叉树;
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            else {
                // 2.2.3 链表 hash 冲突处理情况         
                for (int binCount = 0; ; ++binCount) {
                    // 2.2.3.1 遍历链表
                    if ((e = p.next) == null) {
                        // 2.2.3.1.1 链表末端加入新的节点
                        p.next = newNode(hash, key, value, null);
                        // 如果大于TREEIFY_THRESHOLD 二叉树阀值,转成红黑二叉树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 2.2.3.1.2 链表节点与新的节点完全相等, 找到相同节点
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 存在 key 的值,替换新的值,并把原有值返回。
            // 因为只是替换原有的value,map容量没增大,modCount不变,直接返回
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                // HashMap 是空方法,HashMap可以忽略这个方法;
                // LinedHashMap 需要把节点移到链表的最后;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        // 新增节点,所以modCount + 1
        // size ++ 如果超出了threshold 则 resize 扩容;
        ++modCount;
        if (++size > threshold)
            resize();
        // HashMap 是空方法,HashMap可以忽略这个方法;
        // LinedHashMap 某种情况下,需要把第一个节点移除;
        afterNodeInsertion(evict);
        return null;
    }

3. resize 方法(HashMap 扩容)

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node[] resize() {
        Node[] oldTab = table;
        // 缓存旧的容量,旧的阀值;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 1. 扩展容量和阀值
        if (oldCap > 0) {
            // 1.1. 超过最大容量,则取 int 的最大值, 不做结构变更;
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 1.2 没有超过最大容量,则容量翻倍, <<1  相当于 * 2;
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        // 1.3 再扩容就超过最大容量,则使用阀值容量;
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        // 1.4 初始化默认容量和默认阀值;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
       // 如果新的阀值 = 0, 则使用负载因子 * 新的容量 
       if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
        }
        // 刷新阀值
        threshold = newThr;
        // 初始化新table
        @SuppressWarnings({"rawtypes","unchecked"})
            Node[] newTab = (Node[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            // 遍历旧table,转移表里键值对;
            for (int j = 0; j < oldCap; ++j) {
                Node e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 节点没法Hash冲突,则直接移到新的节点上;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 如果是颗红黑树, 重构(拆分)二叉树。
                    else if (e instanceof TreeNode)
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    else { // preserve order // 链表分割
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            // 把原链表分割成高位链表和低位链表
                            if ((e.hash & oldCap) == 0) {
                                // 低位链表
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                // 高位链表
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 如果低位链表有值,则放回原位置 j
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        // 如果高位链表有值,则放到 j + oldCap 位置
                        // 为什么到 j + oldCap 呢?因为容量都是2次幂的,扩容也是2次幂;
                        // 高位的 hash 值肯定是位移 oldCap
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

扩容链表重新分割过程如下


HashMap 1.8 扩容

4. tableSizeFor 方法(初始化容量)

该方法保证 HashMap 初始化容量肯定是2次幂;

    /**
     * Returns a power of two size for the given target capacity.
     * 返回 大于等于capacity且最小的二次幂的数。
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

5. get、containKey 方法

放了解 put 方法里面Hash值的散列算法,get方法是指用hash 值读到对应位置的值而已。

还有其他方法都是比较简单的内容了,这里不一一描述。

总结 (不擅长写总结)##

HashMap 主要是 hash 算法 和 红黑二叉树,
hash 算法 是整个数据集根据
hash code 散列到不同的节点,
红黑二叉树则降低冲突访问时,查询复杂度。

遇到的问题:

  1. Object.hashCode() 怎么实现的?
  2. 为什么默认初始化大小选16 ?
  3. TreeNode 详解 (优先级最高)
  4. TreeNode.prev 的作用是什么?
  5. modCount 变量的作用是什么?
    记录修改次数,用于线程安全问题;

你可能感兴趣的:(HashMap 源码分析)