- 对话式AI助手的巅峰对决:ChatGPT与文心一言的实用价值探讨
酷钉
chatgpt人工智能
随着人工智能技术的发展,对话式AI助手逐渐成为了人们生活中的一部分。其中,ChatGPT和文心一言更是备受关注的两款对话式AI助手。本文将探讨这两款AI助手的实用价值,并通过案例和数据的方式进行分析。一、ChatGPT的实用价值跨语言交流ChatGPT是一款能够进行跨语言交流的对话式AI助手。据统计,ChatGPT支持的语言数量超过100种,用户可以通过它轻松地与不同国家和地区的人进行交流。例如,
- 微信小程序|流浪动物救助小程序的设计与实现
qq_469603589
微信小程序小程序微信小程序
作者主页:编程指南针作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师主要内容:Java项目、Python项目、前端项目、人工智能与大数据、简历模板、学习资料、面试题库、技术互助收藏点赞不迷路关注作者有好处文末获取源码项目编号:L-BS-XZBS-30一,环境介绍语言环境:Java:jdk1
- 计算机专业毕业设计选题指南(2025创新版)
程序员小天00
课程设计毕业设计小程序pythoneclipsejava
计算机专业毕业设计选题指南(2025创新版)一、选题方向全景图(按技术维度划分)智能服务系统开发技术架构:SpringBoot+Vue3+MySQL/MongoDB典型场景:●智慧校园:实验室预约系统、学术成果可视化平台●医疗健康:电子病历智能分析系统、慢性病管理助手●城市治理:垃圾分类智能识别系统、交通拥堵预测模型创新点:融合OCR识别/NLP技术,实现无感化服务跨平台应用开发技术选型:Unia
- 如何禁止GPTBot等爬虫爬取网站内容:保护数据安全的实用指南
淮橘√
人工智能
引言随着人工智能技术的快速发展,网络爬虫(如OpenAI的GPTBot、GoogleBot、Anthropic的ClaudeBot等)被广泛用于抓取网站数据以训练AI模型或索引内容。然而,部分网站管理员可能不希望自己的内容被爬虫抓取,原因包括保护原创内容、降低服务器负载或防止数据被滥用。一、为什么需要禁止爬虫?网络爬虫可能带来以下问题:内容盗用风险:原创内容可能被AI模型或其他服务未经授权使用。服
- Java 与 AI 携手,掀起多领域智能变革浪潮
WangRK_
人工智能java开发语言
在数字化转型的时代浪潮下,技术更新迭代速度超乎想象。当Java这门历经二十余年沉淀的编程语言,遇上风头正劲的人工智能(AI),一场席卷多领域的智能变革正悄然发生。尤其是在金融与零售两大行业,这场技术融合带来的改变,正重塑着整个行业的生态。一、Java在金融与零售行业的“前世今生”(一)曾经的行业基石在金融领域,Java堪称“代码钢铁侠”,是金融基础设施的坚实支柱。全球顶级交易所依靠Java强大的性
- 从零开始理解Transformer模型:架构与应用
淮橘√
transformer深度学习人工智能
引言近年来,Transformer模型席卷了自然语言处理(NLP)领域,成为了深度学习中的明星架构。从Google提出的《AttentionisAllYouNeed》论文到ChatGPT、BERT等模型的广泛应用,Transformer以其强大的性能和灵活性改变了我们对序列建模的认知。本文将从零开始,深入浅出地解析Transformer的架构原理、核心组件以及实际应用场景,并提供一个简单的代码示例
- 筑牢医疗AI安全防线:四重防护体系全解析
Allen_Lyb
数智化教程(第二期)人工智能安全
一、引言:医疗AI发展中的安全困境在数字化浪潮席卷下,医疗领域正经历着一场由人工智能(AI)驱动的深刻变革。医疗AI凭借其强大的数据分析与处理能力,在疾病诊断、药物研发、健康管理等诸多环节展现出巨大潜力,成为推动医疗行业进步的关键力量。而这一切的背后,医疗数据作为AI发展的“燃料”,以及AI算力作为运行的“引擎”,起着不可或缺的核心作用。医疗数据涵盖了患者从基本信息、病史、症状描述到各种检查检验报
- Open AI在AI人工智能领域的技术安全防护体系
AI智能探索者
AIAgent智能体开发实战人工智能安全网络ai
OpenAI在AI人工智能领域的技术安全防护体系关键词:OpenAI、AI安全、技术防护、伦理框架、模型对齐、数据隐私、对抗攻击摘要:本文将深入探讨OpenAI在人工智能领域构建的多层次技术安全防护体系。我们将从基础概念出发,逐步解析OpenAI如何通过技术创新和系统设计来确保AI系统的安全性、可靠性和可控性。文章将涵盖从数据安全到模型对齐,从伦理框架到实际防护技术的全方位内容,帮助读者全面理解现
- 揭秘自然语言处理在AI人工智能领域的奥秘
AI智能探索者
AIAgent智能体开发实战人工智能自然语言处理easyuiai
揭秘自然语言处理在AI人工智能领域的奥秘关键词:自然语言处理、AI人工智能、语言理解、语言生成、语义分析摘要:本文深入探讨了自然语言处理(NLP)在AI人工智能领域的奥秘。首先介绍了自然语言处理的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了自然语言处理的核心概念与联系,通过文本示意图和Mermaid流程图进行展示。详细讲解了核心算法原理和具体操作步骤,并用Python源代码进行阐述。分
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- AI离全社会普及,只差一个计算中心?
a13163944010
人工智能
过去十年,人工智能(AI)大爆炸,并第一次走进普通人的生活。但蓬勃发展的AI却碰到一个空前棘手的问题:自2012年以来,AI算力需求6年增长30万倍,远超摩尔定律!人类现有的基础设施,已跟不上AI算力需求的增长。未来,该怎么办?【1】一百多年前,人类也曾面临同样的难题。1866年,德国西门子发明自激发电机,开启了人类的电力时代。此后十几年,虽然很多企业纷纷采用电能这种新的动力,但一台电机只能供应一
- 首次使用“非英伟达”芯片!OpenAI租用谷歌TPU,降低推理计算成本
加百力
科技知识财经研究人工智能chatgpt
OpenAI近期开始租用谷歌TPU芯片,这是该公司首次大规模使用非英伟达芯片。除了OpenAI外、苹果、SafeSuperintelligence和Cohere等公司也一直租用谷歌云的TPU。英伟达的芯片主导地位正被侵蚀,OpenAI租用谷歌TPU,为首次大规模使用“非英伟达”芯片。周六,据媒体报道,作为全球最大的人工智能芯片客户之一,OpenAI近期开始租用谷歌的TPU芯片为ChatGPT等产品
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 初学Spring AI 笔记
笑衬人心。
大模型学习spring人工智能笔记
目录SpringAI简介依赖与环境配置基础概念集成OpenAI(或其他LLM提供商)Prompt模板引擎Embedding与向量数据库SpringAIChatClient使用SpringAI和LangChain对比常见问题与建议SpringAI简介SpringAI是Spring团队推出的人工智能集成框架,旨在简化AI模型(如OpenAI、HuggingFace、Mistral、AzureOpenA
- AI新高度——DEEPSEEK
数字隐士·赛博智者
ai
DeepSeek是由中国人工智能公司「深度求索」开发的一系列高性能大语言模型产品及相关技术体系,其定位为通用人工智能(AGI)探索者,目前已发展成为全球增长最快、性能领先的开源模型之一。下面是关于DeepSeek的详细介绍:一、DeepSeek的开发者与背景公司名称:杭州深度求索人工智能基础技术研究有限公司(成立于2023年)核心支持:由中国知名对冲基金「高毅资产」创立并提供资金与技术资源
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- [论文阅读] 人工智能 + 软件工程 | 揭秘ChatGPT在软件开发问题解决中的有效性:一项实证研究
张较瘦_
前沿技术论文阅读人工智能软件工程
揭秘ChatGPT在软件开发问题解决中的有效性:一项实证研究论文:WhatMakesChatGPTEffectiveforSoftwareIssueResolution?AnEmpiricalStudyofDeveloper-ChatGPTConversationsinGitHubarXiv:2506.22390WhatMakesChatGPTEffectiveforSoftwareIssueRe
- [论文阅读] 人工智能 + 软件工程 | 代码注释不一致问题研究:从数据革新到端到端解决方案
张较瘦_
前沿技术论文阅读人工智能软件工程
代码注释不一致问题研究:从数据革新到端到端解决方案原文:CCISOLVER:End-to-EndDetectionandRepairofMethod-LevelCode-CommentInconsistencyarXiv:2506.20558CCISolver:End-to-EndDetectionandRepairofMethod-LevelCode-CommentInconsistencyRe
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- 人类编程时代即将终结?OpenAI首席产品官预测AI将在今年底全面超越人类程序员
前端javascript
ReactHook深入浅出CSS技巧与案例详解vue2与vue3技巧合集VueUse源码解读近日,OpenAI首席产品官KevinWeil在接受采访时表示,人工智能的发展速度远超预期,今年底就有可能在编程领域永久性地超越人类程序员。这一观点立即引发了行业热议,也让程序员们对未来产生了深刻的思考。人工智能的进展速度远超想象在与VarunMayya和TanmayBhat共同主持的YouTube节目《O
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- 智能之火,重塑创造:大模型如何点燃新一代开发引擎?
黑巧克力可减脂
AIGC人工智能AIGC
导言:普罗米修斯之火再现在科技演进的长河中,每一次生产力的跃迁都伴随着工具的质变。从蒸汽机轰鸣到电力普及,再到信息高速公路的铺就,人类驾驭能量的能力不断突破。今天,我们站在一个崭新的临界点上:大语言模型(LLM)正将人工智能的“普罗米修斯之火”引入软件开发的核心腹地。这不再仅仅是效率的优化,更是对开发者角色、开发流程乃至软件本质的深度重塑。GitHubCEOThomasDohmke曾断言:“Cop
- LoRA 实战指南:NLP 与 CV 场景的高效微调方法全解析
fairymt
产品经理的AI秘籍自然语言处理人工智能机器学习
大模型已成AI应用的“标配”,但高昂的训练和部署成本让很多企业望而却步。LoRA(Low-RankAdaptation)作为一种轻量级微调方案,正成为NLP与CV场景中低成本定制的利器。本文详细通过详细介绍LoRA的核心原理、在文本与图像任务中的应用场景、主流工具框架与实践方式,帮助你快速掌握这项高性价比技术。国产生态实战:基于LLaMA-Factory+DeepSeek+LoRA+FastAPI
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- FastGPT与MCP:解锁AI新时代的技术密码
挑战者666888
AI模型应用实战迁移学习集成学习文心一言
一、AI浪潮中的新星:FastGPT与MCP登场在当今科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到复杂的图像识别系统,AI的应用无处不在,而其中的关键技术——语言模型和集成平台,更是备受关注。FastGPT和MCP(Multi-ComponentPlatform)作为这一领域的新兴代表,正逐渐崭露头角,为AI的发展注入新的活力。FastGPT,以其高效的推理
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- 提升首屏加载的秘密武器:一文讲透 CDN 加速核心逻辑
网罗开发
实战源码前端jsonjavascript
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key