1. 版本 1.8
ConcurrentHashMap其实我理解就是HashMap存在线程安全问题,因此提供了该容器,使用是就能够保证线程安全。对比jdk1.6到jdk1.8这两个版本,实现上变化很大。
ConcurrentHashMap在JDK1.6的版本网上资料很多,有兴趣的可以去看看。
JDK 1.6版本关键要素:利用了锁分段的思想提高了并发度。
- segment继承了ReentrantLock充当锁的角色,为每一个segment提供了线程安全的保障;
- segment维护了哈希散列表的若干个桶,每个桶由HashEntry构成的链表。
而到了JDK 1.8的ConcurrentHashMap就有了很大的变化,光是代码量就足足增加了很多。1.8版本舍弃了segment,并且大量使用了synchronized,以及CAS无锁操作以保证ConcurrentHashMap操作的线程安全性。至于为什么不用ReentrantLock而是Synchronzied呢?实际上,synchronzied做了很多的优化,包括偏向锁,轻量级锁,重量级锁,可以依次向上升级锁状态,但不能降级,因此,使用synchronized相较于ReentrantLock的性能会持平甚至在某些情况更优。另外,底层数据结构改变为采用数组+链表+红黑树的数据形式。
关键属性
table
volatile Node
nextTable
volatile Node
sizeCtl
volatile int sizeCtl;
该属性用来控制table数组的大小,根据是否初始化和是否正在扩容有几种情况:
当值为负数时:如果为-1表示正在初始化,如果为-N则表示当前正有N-1个线程进行扩容操作;
当值为正数时:如果当前数组为null的话表示table在初始化过程中,sizeCtl表示为需要新建数组的长度;
若已经初始化了,表示当前数据容器(table数组)可用容量也可以理解成临界值(插入节点数超过了该临界值就需要扩容),具体指为数组的长度n 乘以 加载因子loadFactor;当值为0时,即数组长度为默认初始值。
sun.misc.Unsafe U
在ConcurrentHashMapde的实现中可以看到大量的U.compareAndSwapXXXX的方法去修改ConcurrentHashMap的一些属性。这些方法实际上是利用了CAS算法保证了线程安全性,这是一种乐观策略,假设每一次操作都不会产生冲突,当且仅当冲突发生的时候再去尝试。而CAS操作依赖于现代处理器指令集,通过底层CMPXCHG指令实现。CAS(V,O,N)核心思想为:若当前变量实际值V与期望的旧值O相同,则表明该变量没被其他线程进行修改,因此可以安全的将新值N赋值给变量;若当前变量实际值V与期望的旧值O不相同,则表明该变量已经被其他线程做了处理,此时将新值N赋给变量操作就是不安全的,在进行重试。而在大量的同步组件和并发容器的实现中使用CAS是通过sun.misc.Unsafe类实现的,该类提供了一些可以直接操控内存和线程的底层操作,可以理解为java中的“指针”。
核心方法阅读
1. put源码
整体核心步骤走读整理:
- 计算key的hashCode值,计算方式与hashMap不同,把hashMap的高低16位异或后再按位与 Hash_BITS(0x7fffffff ,代表普通节点Hash的可用位)的值。不管用什么算法,都是为了降低key的hash冲突。
2.遍历table(存放node数据的
如果为空,先初始化数据,说明数组初始化再put时进行。
如果通过hash的算法定位到的索引的位置的元素为null,则直接使用cas方式将值插入,退出遍历。
当前的元素的hash值是否等于 - 1,等于则表示该索引位置的元素正在扩容。则调用helpTransfer(tab, f);该方法后面讲。
以上都不满足,会加锁,遍历该链表(或者红黑树)的元素,如果找到对应的key,则直接更新val,否则构建一个node节点,插入到末尾。
这里会维护一个遍历的次数,如果该索引下的数据结构为链表,加入该数据后大于等于8,则会转化为红黑树(前提是元素个数大于64个),如果总个数小于64,则会尝试扩展原来的个数。
遍历结束重新调整表的大小,并且计算占用率, 在put方法结尾处调用了addCount方法,把当前ConcurrentHashMap的元素个数+1这个方法一共做了两件事,更新baseCount的值,检测是否进行扩容。。
6.如果put的key已经存在,会返回old value,否则返回null
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//1. 计算key的hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table;;) {
Node f; int n, i, fh;
//2. 如果当前table还没有初始化先调用initTable方法将tab进行初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//3. tab中索引为i的位置的元素为null,则直接使用CAS将值插入即可
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//4. 当前正在扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
//5. 当前为链表,在链表中插入新的键值对
if (fh >= 0) {
binCount = 1;
for (Node e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
// 6.当前为红黑树,将新的键值对插入到红黑树中
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
// 7.插入完键值对后再根据实际大小看是否需要转换成红黑树
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//8.对当前容量大小进行检查,如果超过了临界值(实际大小*加载因子)就需要扩容
addCount(1L, binCount);
return null;
}
2. get方法源码
- hash算法,得到索引值,找到桶,
- 判断桶的值不为空,且等于要查找的key的值,则字节返回。
3.如果节点的值是否小于0,小于则为树节点,通过是节点方式查找。
4.不是树节点,就是链表,while遍历查找。
public V get(Object key) {
Node[] tab; Node e, p; int n, eh; K ek;
// 1. 重hash
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 2. table[i]桶节点的key与查找的key相同,则直接返回
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 3. 当前节点hash小于0说明为树节点,在红黑树中查找即可
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
//4. 从链表中查找,查找到则返回该节点的value,否则就返回null即可
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
3. transfer方法
(concurrentHashMap中的扩容方法,区别原来的resize,他是支持并发扩容,所以相对复杂,支持多线程扩容,但是不是通过加锁的方式)
private final void transfer(Node[] tab, Node[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//1. 新建Node数组,容量为之前的两倍
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
//2. 新建forwardingNode引用,在之后会用到
ForwardingNode fwd = new ForwardingNode(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node f; int fh;
// 3. 确定遍历中的索引i
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//4.将原数组中的元素复制到新数组中去
//4.5 for循环退出,扩容结束修改sizeCtl属性
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
//4.1 当前数组中第i个元素为null,用CAS设置成特殊节点forwardingNode(可以理解成占位符)
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//4.2 如果遍历到ForwardingNode节点 说明这个点已经被处理过了 直接跳过 这里是控制并发扩容的核心
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node ln, hn;
if (fh >= 0) {
//4.3 处理当前节点为链表的头结点的情况,构造两个链表,一个是原链表 另一个是原链表的反序排列
int runBit = fh & n;
Node lastRun = f;
for (Node p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
//在nextTable的i位置上插入一个链表
setTabAt(nextTab, i, ln);
//在nextTable的i+n的位置上插入另一个链表
setTabAt(nextTab, i + n, hn);
//在table的i位置上插入forwardNode节点 表示已经处理过该节点
setTabAt(tab, i, fwd);
//设置advance为true 返回到上面的while循环中 就可以执行i--操作
advance = true;
}
//4.4 处理当前节点是TreeBin时的情况,操作和上面的类似
else if (f instanceof TreeBin) {
TreeBin t = (TreeBin)f;
TreeNode lo = null, loTail = null;
TreeNode hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode p = new TreeNode
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
参考了几篇博客和自己的总结,整个扩容操作基本是分为两个部分:
构建一个新的数组nextTable,长度为原来两倍,通过位运算扩容,效率更高。
Node[] nt = (Node [])new Node,?>[n << 1]。 将原来的table中元素迁移到nextTable中,与HashMap不同的是,利用的规则不一样。找到桶的位置,进行遍历:
如果这个位置为空,就在原table中的i位置放入forwardNode节点,这个也是触发并发扩容的关键点;
如果这个位置是Node节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上
如果这个位置是TreeBin节点(fh<0),也做一个反序处理,并且判断是否需要untreefi,把处理的结果分别放在nextTable的i和i+n的位置上
总结
JDK6,7中的ConcurrentHashmap主要使用Segment来实现减小锁粒度,分割成若干个Segment,在put的时候需要锁住Segment,get时候不加锁,使用volatile来保证可见性,当要统计全局时(比如size),首先会尝试多次计算modcount来确定,这几次尝试中,是否有其他线程进行了修改操作,如果没有,则直接返回size。如果有,则需要依次锁住所有的Segment来计算。
1.8之前put定位节点时要先定位到具体的segment,然后再在segment中定位到具体的桶。而在1.8的时候摒弃了segment臃肿的设计,直接针对的是Node[] tale数组中的每一个桶,进一步减小了锁粒度。并且防止拉链过长导致性能下降,当链表长度大于8的时候采用红黑树的设计。
主要设计上的变化有以下几点:
不采用segment而采用node,锁住node来实现减小锁粒度。
设计了MOVED状态 当resize的中过程中 线程2还在put数据,线程2会帮助resize。
使用3个CAS操作来确保node的一些操作的原子性,这种方式代替了锁。
sizeCtl的不同值来代表不同含义,起到了控制的作用。
采用synchronized而不是ReentrantLock
部分载自:
https://www.jianshu.com/p/c02a5627d0a5