十大经典排序之:基数排序 |计数排序

十大经典排序之:归并排序 |桶排序

  • 基数排序
    • 基数排序原理
    • 算法实现
    • 例题
  • 计数排序
    • 计数排序原理
    • 算法实现
    • 例题

基数排序

基数排序原理

今天的排序算法可能比之前的稍微难点。基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort。最早用于解决卡片排序的问题。

基数排序是可以应对字符的,针对于字符串的基数排序就诞生了,它是在计数排序的基础上进行了改进,在某些时候,基数排序法的效率高于其它的稳定性排序法。基数排序从最低为开始来排序的,从低位到高位,按位排序,按位排序必须是稳定的。

基本思想:对于每个元素x,如果我们知道了小于x的元素的个数,就可以确定输出数组中元素x的位置,那么直接将元素x放到输出数组中。比如有3小于x的元素,那在输出数组中,x肯定位于第4个位置。

算法实现

1、算法描述

  1. 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。
  2. 从最低位开始,依次进行一次排序。
  3. 这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。

2、图示

3、算法空间复杂度和时间复杂度
时间复杂度

  • 最坏:o( d ( r + n ) d(r+n) dr+n
  • 最好:o( d ( r d + n ) d(rd+n) drd+n
  • 平均:o( d ( r + n ) d(r+n) dr+n

空间复杂度(辅助存储):o(rd+n)
稳定性:稳定

ps:r:关键字基数 d:长度 n:关键字个数

例题

用基数排序将以下数列按照从小到大的顺序输出:123,45,6,22,99,1,38,41,7,0

java代码:

import java.util.*;
public class Test {
    //pos=1表示个位,pos=2表示十位
    public static int getNumInPos(int num, int pos) {
        int tmp = 1;
        for (int i = 0; i < pos - 1; i++) {
            tmp *= 10;
        }
        return (num / tmp) % 10;
    }
    
    //求得最大位数d
    public static int getMaxW(int[] arr) {
        int max = arr[0];
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] > max)
                max = arr[i];
        }
        int tmp = 1, d = 1;
        while (true) {
            tmp *= 10;
            if (max / tmp != 0) {
                d++;
            } else
                break;
        }
        return d;
    }
    public static void radixSort(int[] arr, int d) {
        int[][] array = new int[10][arr.length + 1];
        for (int i = 0; i < 10; i++) {
            array[i][0] = 0;
            // array[i][0]记录第i行数据的个数
        }
        for (int pos = 1; pos <= d; pos++) {
            for (int i = 0; i < arr.length; i++) {
                // 分配过程
                int row = getNumInPos(arr[i], pos);
                int col = ++array[row][0];
                array[row][col] = arr[i];
            }
            for (int row = 0, i = 0; row < 10; row++) {
                // 收集过程
                for (int col = 1; col <= array[row][0]; col++) {
                    arr[i++] = array[row][col];
                }
                array[row][0] = 0;
                // 复位,下一个pos时还需使用
            }
        }
    }

    public static void main(String[] args) {
        int[] arr=new int[]{123,45,6,22,99,1,38,41,7,0};
        //基数排序
        radixSort(arr,getMaxW(arr));

        System.out.println("基数排序后的结果是:");
        System.out.println(Arrays.toString(arr));
    }

}

计数排序

计数排序原理

计数排序是一个非基于比较的排序算法,它的优势在于在对一定范围内的整数排序时,快于任何比较排序算法。其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中,作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

简单来说,就是通过数组下标来确定正确的位置,并在数组中记录出现的次数,最后得到有序数据。

核心思想:统计每个整数在序列中出现的次数,进而推导出每个整数在有序序列中的索引

算法实现

1、算法描述

  1. 找出待排序的数组中最大和最小的元素
  2. 统计数组中每个值为i的元素出现的次数,存入数组C 的第i项
  3. 对所有的计数累加 (从C 中的第一个元素开始,每一项和前一项相加)
  4. 反向填充目标数组:将每个元素i放在新数组的第C[i]项,每放一个元素就将C[i]减去1

2、图示

3、算法空间复杂度和时间复杂度
时间复杂度:

  • 最坏:o( n + k n+k n+k
  • 最好:o( n + k n+k n+k
  • 平均:o( n + k n+k n+k

空间复杂度(辅助存储):o( n + k n+k n+k

稳定性:稳定

例题

用计数排序将以下数列按照从小到大的顺序输出:
66,13,51,76,81,26,57,69,23

java代码:


import java.util.*;
public class Test {
    public static void countSort(int[] arr) {
        int min = arr[0];
        int max = arr[0];

        for (int i = 1; i < arr.length; i++) {
            if (min > arr[i])  min = arr[i];
            if (max < arr[i]) max = arr[i];
        }
        // 构建一个新的数组,把原数组中数据的值当作下标存入,下标从0开始;因为max要放入对应下标中,所以要+1
        int[] bucketArr = new int[max + 1];
        for (int k = 0; k < arr.length; k++) {
            //数字每出现一次,就在原基础上+1
            bucketArr[arr[k]] = bucketArr[arr[k]] + 1;
        }
        
        int finalIndex = 0;
        for (int n = min; n < bucketArr.length; n++) {

            if (bucketArr[n] > 0) {
                for (int l = 0; l < bucketArr[n]; l++) {
                    arr[finalIndex++] = n;
                }
            }
        }
    }


    public static void main(String[] args) {
        int[] arr=new int[]{66,13,51,76,81,26,57,69,23};
        //记数排序
        countSort(arr);

        System.out.println("记数排序后的结果是:");
        System.out.println(Arrays.toString(arr));
    }

}

你可能感兴趣的:(今天开始学算法,java,算法,排序算法,数据结构)