- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 万字长文详解YOLOv8 yaml 文件,结合模型输出的网络结构图分析Parameters /backbone/head以及三者的数学关联
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例之前写过一篇YOLOv8yaml配置文件逐层的解析:结合YOLOv8源码逐层解读yaml文件的配置,本文主要从整体的角度去解析yaml。YOLOv8模型YOLOv8提供了非常多的模型,详见:https:
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- 《中国电信运营商骨干网:历史、现状与未来演进》系列 第一篇:中国骨干网全景图:一级运营商与专用网络的演进
老马爱知
通信网络#电信运营商网络骨干网电信运营商网络架构数字基础设施互联网科普
一、引言:骨干网——国家“信息大动脉”在当今数字经济蓬勃发展的时代,信息网络已成为国家基础设施的核心组成部分。而在这张错综复杂的信息大网中,骨干网(BackboneNetwork)扮演着“
- YOLOv11 改进策略 | GFPN:超越 BiFPN,跳层与跨尺度连接重塑特征金字塔
YOLOv11改进策略|GFPN:超越BiFPN,跳层与跨尺度连接重塑特征金字塔!介绍颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet和BiFPN等结构是特征金字塔融合的代表。BiFPN作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。
- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- Odoo OWL 框架深度研究(VIP10万字版)
源力祁老师
odoo开发实践学习方法开发语言前端
一、核心理念、架构定位与实践价值前言:为什么需要一份新的前端框架?在Odoo的漫长发展历程中,其前端部分长期依赖于一个基于Backbone.js的自定义Widget系统。这个系统在当时是有效的,但随着前端技术的飞速发展(以React,Vue,Svelte等框架为代表),其固有的命令式编程、手动DOM操作和复杂的继承体系等问题,逐渐成为制约开发效率和应用性能的瓶颈。为了彻底解决这些历史遗留问题,并拥
- 人像抠图学习笔记
AI算法网奇
人脸识别深度学习宝典深度学习神经网络自动驾驶
目录RobustVideoMatting实时视频抠图Modnet预测脚本人脸分割BiseNetV2MODNetu2net:MODNet方法RobustVideoMatting实时视频抠图Modnet预测脚本Modnet效果有时比RobustVideoMatting好,在衣服分割时,backbone是mobilev2gpu512*512速度22ms。importosimportsysimportar
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- YOLOV8模型优化-选择性视角类别整合模块(SPCI):遥感目标检测的注意力增强模型详解
清风AI
YOLO算法魔改系列深度学习算法详解及代码复现计算机视觉算法目标跟踪人工智能计算机视觉YOLOpython目标检测深度学习
一、研究背景与挑战随着卫星和无人机技术的普及,高分辨率遥感影像为城市规划、灾害监测等领域提供了海量数据。然而,遥感目标检测面临三大难题:尺度剧变:目标尺寸从几米到几百米不等(如飞机vs油罐)密集分布:港口/机场等场景存在大量密集目标背景干扰:自然/人造景观交织导致语义混淆现有方法如YOLOv8虽在通用目标检测表现优异,但在遥感场景存在以下局限:Backbone缺乏显式的多尺度特征融合机制传统注意力
- YOLOv5 模型结构详解
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
✅YOLOv5模型结构详解以下是以YOLOv5的最小版本yolov5s为例的模型结构(来自Ultralytics/yolov5官方实现):输入图像大小:640×640×3YOLOv5s的完整模型结构(来自models/yolov5s.yaml)#YOLOv5smodelbackbone:#[from,number,module,args][[-1,1,'Conv',[64,6,2,2]],#0-P
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- YOLOv12改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对A2C2f进行二次创新
Limiiiing
YOLOv12改进专栏YOLOv12深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv12的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新A2C2f,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv
- YOLOv10改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对 C2fCIB 、PSA 进行二次创新
Limiiiing
YOLOv10改进专栏YOLO深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv10的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新C2fCIB、PSA,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:
- 2015-5-10分享的PDF
qq2011705918
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv12改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv12改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv12结合。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准
- YOLOv10改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv10改进专栏YOLO计算机视觉目标检测深度学习
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv10结合。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准
- 【目标检测】backbone究竟有何关键作用?
猫天意
目标检测目标检测人工智能计算机视觉CV
backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合,以满足对不同尺度和类别的目标检测。
- 目标检测模型的主要组成部分
asdfg1258963
目标检测_ai目标检测人工智能计算机视觉
目标检测模型通常由以下几个主要部分组成:1.主干网络(Backbone)主干网络是目标检测模型的核心部分,负责从输入图像中提取特征。常见的主干网络包括:卷积神经网络(CNN):如ResNet、VGG、MobileNet等。它们通过多层卷积操作提取图像的多层次特征。Transformer架构:如VisionTransformer(ViT)及其变体,通过自注意力机制提取全局特征。主干网络的输出是一个特
- 【目标检测】检测网络中neck的核心作用
猫天意
目标检测人工智能计算机视觉CV基础
1.neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。2.neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。3.neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征
- 目标检测:Deformable DETR: Deformable Transformers for End-to-End Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉深度学习算法论文解读
可以查看B站视频(讲的很详细,对照下文内容进行视频观看,效果更佳):(1)DeformableDETR|1、Abstract算法概述(2)DeformableDETR|2、backbone、MultiHeadAttention公式讲解(3)DeformableDETR|3、DeformableAttention、MSDeformAttention、流程讲解摘要DETR最近被提出以消除许多手工设计的
- RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
Limiiiing
RT-DETR改进专栏深度学习目标检测RT-DETR计算机视觉
一、本文介绍本文记录的是基于RevCol的RT-DETR目标检测改进方法研究。RevCol是一种新型神经网络设计范式,它由多个子网(列)及多级可逆连接构成,正向传播时特征逐渐解缠结且保持信息。可逆变换借鉴可逆神经网络思想,设计多级可逆单元用于解决模型对特征图形状的限制以及与信息瓶颈原则的冲突。本文将其应用到RT-DETR中,并配置了原论文中的revcol_tiny、revcol_small、rev
- YOLOv9改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
Limiiiing
YOLOv9改进专栏计算机视觉深度学习YOLO目标检测
一、本文介绍本文记录的是基于CAA注意力模块的YOLOv9目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量更少。专栏目录:YOLOv9改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改
- 2、YOLOv12架构解析:速度与精度的艺术
进取星辰
YOLO
前言:拆解YOLO的"超级大脑"还记得我们上篇文章用5行代码实现的物品检测吗?今天我要带你走进YOLOv12的"大脑",看看这个闪电侠是如何思考的!想象一下:当你走进一家咖啡馆时,你的大脑会:快速扫描整个场景(Backbone)注意到重要区域:柜台、座位区(Neck)精确识别:拿铁咖啡、巧克力蛋糕(Head)YOLOv12的工作方式惊人地相似!下面我们就来拆解这套视觉感知系统:1.整体架构:从三明
- 探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元
郑微殉
探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元Bert-VITS2vits2backbonewithmultilingual-bert项目地址:https://gitcode.com/gh_mirrors/be/Bert-VITS2一、项目介绍Bert-VITS2,如其名,是一个融合了多语言预训练模型——BERT与新一代文本到语音(Text-to-Speech,TT
- 基于RT-DETR的YOLOv8目标检测框架优化及其应用前景
向哆哆
YOLO创新涨点系列YOLO目标检测人工智能yolov8
文章目录什么是RT-DETR?一、YOLOv8与RT-DETR检测头的结合YOLOv8架构概述代码实例:YOLOv8与RT-DETR检测头的集成1.引入必要的库2.YOLOv8Backbone(特征提取)3.RT-DETR检测头4.集成YOLOv8Backbone与RT-DETR头5.模型训练与评估二、YOLOv8与RT-DETR检测头的结合:进一步的优化与调优1.数据增强与多尺度训练数据增强技术
- 论文阅读《BEVFormer v2》
YMWM_
论文论文阅读
BEVFormerv2:AdaptingModernImageBackbonestoBird’s-Eye-ViewRecognitionviaPerspectiveSupervision目录摘要1介绍2相关工作2.1BEV三维目标检测器摘要我们提出了一种具有透视监督的新型鸟瞰图(BEV)检测器,其收敛速度更快并且更适合现代图像主干。现有的最先进的BEV检测器通常与某些深度预训练主干网络(如VoVN
- java集合对象声明_Java基础————集合类
不贪吃
java集合对象声明
原标题:Java基础————集合类理解集合类集合类存放于java.util包中。集合类存放的都是对象的引用,而非对象本身,出于表达上的便利,我们称集合中的对象就是指集合中对象的引用(reference)。集合类型主要有3种:set(集)、list(列表)和map(映射)。http://www.backboneitgroup.cn(1)集集(set)是最简单的一种集合,它的对象不按特定方式排序,只是
- 深入理解Backbone路由器与前端JavaScript集成
来自日本的亮仔
Backbone路由器单页应用Socket.IO深度链接前端JavaScript
背景简介Backbone.js是一个轻量级的模型视图控制器(MVC)JavaScript框架,广泛用于构建富交互的Web应用程序。本文将探讨Backbone路由器的使用,这是Backbone中的一个关键特性,它使得单页应用程序(SPA)能够处理URL的变化,并响应用户的导航操作。Backbone路由器的作用与实现Backbone路由器通过监听URL中的哈希变化来触发事件,允许我们在SPA中模拟传统
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在