【Flink-1.17-教程】-【一】Flink概述、Flink快速入门

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门

  • 1)Flink 是什么
    • 1.1.有界流和无界流
    • 1.2.Flink 的发展史
  • 2)Flink 特点
  • 3)Flink vs SparkStreaming
  • 4)Flink 的应用场景
  • 5)Flink 分层 API
  • 6)Flink 快速入门
    • 6.1.创建项目
    • 6.2.WordCount 代码编写
      • 6.2.1.批处理(了解)
      • 6.2.2.流处理(主流)

1)Flink 是什么

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第1张图片

1.1.有界流和无界流

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第2张图片

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第3张图片

1.2.Flink 的发展史

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第4张图片

2)Flink 特点

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第5张图片

3)Flink vs SparkStreaming

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第6张图片

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第7张图片

4)Flink 的应用场景

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第8张图片

5)Flink 分层 API

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第9张图片

6)Flink 快速入门

6.1.创建项目

在准备好所有的开发环境之后,我们就可以开始开发自己的第一个 Flink 程序了。首先我们要做的,就是在 IDEA 中搭建一个 Flink 项目的骨架。我们会使用 Java 项目中常见的 Maven 来进行依赖管理。

1、创建工程

(1)打开 IntelliJ IDEA,创建一个 Maven 工程。

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第10张图片

(2)将这个 Maven 工程命名为 FlinkTutorial。

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第11张图片

(3)选定这个 Maven 工程所在存储路径,并点击 Finish,Maven 工程即创建成功。

【Flink-1.17-教程】-【一】Flink概述、Flink快速入门_第12张图片

2、添加项目依赖

在项目的 pom 文件中,添加 Flink 的依赖,包括 flink-java、flink-streaming-java,以及 flink-clients(客户端,也可以省略)。

<properties>
<flink.version>1.17.0flink.version>
properties>
<dependencies>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-streaming-javaartifactId>
<version>${flink.version}version>
dependency>
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-clientsartifactId>
<version>${flink.version}version>
dependency>
dependencies>

6.2.WordCount 代码编写

需求:统计一段文字中,每个单词出现的频次。

环境准备:在 src/main/java 目录下,新建一个包,命名为 com.atguigu.wc。

6.2.1.批处理(了解)

批处理基本思路:先逐行读入文件数据,然后将每一行文字拆分成单词;接着按照单词分组,统计每组数据的个数,就是对应单词的频次

1、数据准备

(1)在工程根目录下新建一个input文件夹,并在下面创建文本文件words.txt

(2)在words.txt中输入一些文字,例如:

hello flink
hello world
hello java

2、代码编写

(1)在 com.atguigu.wc 包下新建 Java 类 BatchWordCount,在静态 main 方法中编写代码。具体代码实现如下:

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

public class BatchWordCount {

    public static void main(String[] args) throws Exception {

        // 1. 创建执行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        
        // 2. 从文件读取数据  按行读取(存储的元素就是每行的文本)
        DataSource<String> lineDS = env.readTextFile("input/words.txt");
        
        // 3. 转换数据格式
        FlatMapOperator<String, Tuple2<String, Long>> wordAndOne = lineDS.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {

            @Override
            public void flatMap(String line, Collector<Tuple2<String, Long>> out) throws Exception {

                String[] words = line.split(" ");

                for (String word : words) {
                    out.collect(Tuple2.of(word,1L));
                }
            }
        });

        // 4. 按照 word 进行分组
        UnsortedGrouping<Tuple2<String, Long>> wordAndOneUG = wordAndOne.groupBy(0);
        
        // 5. 分组内聚合统计
        AggregateOperator<Tuple2<String, Long>> sum = wordAndOneUG.sum(1);

        // 6. 打印结果
        sum.print();
    }
}

(2)输出

(flink,1)
(world,1)
(hello,3)
(java,1)

需要注意的是,这种代码的实现方式,是基于 DataSet API 的,也就是我们对数据的处理转换,是看作数据集来进行操作的。事实上 Flink 本身是流批统一的处理架构,批量的数据集本质上也是流,没有必要用两套不同的 API 来实现。所以从 Flink 1.12 开始,官方推荐的做法是直接使用 DataStream API,在提交任务时通过将执行模式设为 BATCH 来进行批处理:

$ bin/flink run -Dexecution.runtime-mode=BATCH BatchWordCount.jar

这样,DataSet API 就没什么用了,在实际应用中我们只要维护一套 DataStream API 就可以。这里只是为了方便大家理解,我们依然用 DataSet API 做了批处理的实现。

6.2.2.流处理(主流)

对于Flink而言,流才是整个处理逻辑的底层核心,所以流批统一之后的 DataStream API 更加强大,可以直接处理批处理和流处理的所有场景。

下面我们就针对不同类型的输入数据源,用具体的代码来实现流处理。

1、读取文件

我们同样试图读取文档 words.txt 中的数据,并统计每个单词出现的频次。整体思路与之前的批处理非常类似,代码模式也基本一致。

在 com.atguigu.wc 包下新建 Java 类 StreamWordCount,在静态 main 方法中编写代码。具体代码实现如下:

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

import java.util.Arrays;

public class StreamWordCount {

    public static void main(String[] args) throws Exception {
    
        // 1. 创建流式执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 2. 读取文件
        DataStreamSource<String> lineStream = env.readTextFile("input/words.txt");
        
        // 3. 转换、分组、求和,得到统计结果
        SingleOutputStreamOperator<Tuple2<String, Long>> sum = lineStream.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
            @Override
            public void flatMap(String line, Collector<Tuple2<String, Long>> out) throws Exception {

                String[] words = line.split(" ");

                for (String word : words) {
                    out.collect(Tuple2.of(word, 1L));
                }
            }
        }).keyBy(data -> data.f0)
           .sum(1);

        // 4. 打印
        sum.print();
        
        // 5. 执行
        env.execute();
    }
}

输出:

3> (java,1)
5> (hello,1)
5> (hello,2)
5> (hello,3)
13> (flink,1)
9> (world,1)

主要观察与批处理程序BatchWordCount的不同:

  • 创建执行环境的不同,流处理程序使用的是StreamExecutionEnvironment。
  • 转换处理之后,得到的数据对象类型不同。
  • 分组操作调用的是keyBy方法,可以传入一个匿名函数作为键选择器(KeySelector),指定当前分组的key是什么。
  • 代码末尾需要调用env的execute方法,开始执行任务。

2、读取socket文本流

在实际的生产环境中,真正的数据流其实是无界的,有开始却没有结束,这就要求我们需要持续地处理捕获的数据。为了模拟这种场景,可以监听 socket 端口,然后向该端口不断的发送数据。

(1)将 StreamWordCount 代码中读取文件数据的 readTextFile 方法,替换成读取 socket 文本流的方法 socketTextStream。具体代码实现如下:

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

import java.util.Arrays;

public class SocketStreamWordCount {

    public static void main(String[] args) throws Exception {

        // 1. 创建流式执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        // 2. 读取文本流:hadoop102表示发送端主机名、7777表示端口号
        DataStreamSource<String> lineStream = env.socketTextStream("hadoop102", 7777);
        
        // 3. 转换、分组、求和,得到统计结果
        SingleOutputStreamOperator<Tuple2<String, Long>> sum = lineStream.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {
            String[] words = line.split(" ");

            for (String word : words) {
                out.collect(Tuple2.of(word, 1L));
            }
        }).returns(Types.TUPLE(Types.STRING, Types.LONG))
                .keyBy(data -> data.f0)
                .sum(1);

        // 4. 打印
        sum.print();
        
        // 5. 执行
        env.execute();
    }
}

(2)在 Linux 环境的主机 hadoop102 上,执行下列命令,发送数据进行测试

[atguigu@hadoop102 ~]$ nc -lk 7777

注意:要先启动端口,后启动 StreamWordCount 程序,否则会报超时连接异常。

(3)启动 StreamWordCount 程序

我们会发现程序启动之后没有任何输出、也不会退出。这是正常的,因为 Flink 的流处理是事件驱动的,当前程序会一直处于监听状态,只有接收到数据才会执行任务、输出统计结果。

(4)从 hadoop102 发送数据

①在 hadoop102 主机中,输入“hello flink”,输出如下内容

13> (flink,1)
5> (hello,1)

②再输入“hello world”,输出如下内容

2> (world,1)
5> (hello,2)

泛型擦除的说明:

Flink 还具有一个类型提取系统,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于 Java 中泛型擦除的存在,在某些特殊情况下(比如 Lambda 表达式中),自动提取的信息是不够精细的——只告诉 Flink 当前的元素由“船头、船身、船尾”构成,根本无法重建出“大船”的模样;这时就需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。

因为对于 flatMap 里传入的Lambda表达式,系统只能推断出返回的是 Tuple2 类型,而无法得到 Tuple2。只有显式地告诉系统当前的返回类型,才能正确地解析出完整数据。

你可能感兴趣的:(Flink,flink,java,大数据,#flink概述,#flink快速入门,#wordcount)