大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。
作物产量取决于库(sink,获得同化物)的潜力和源(source,供给同化物)的能力,“源—库”关系的优化对作物产量调控具有重要意义。黄瓜(Cucumis sativus L.)是世界范围内广泛种植的蔬菜,是我国具有巨大经济价值的七大蔬菜之一,叶片和速生果实属于黄瓜的“源”和“库”器官。黄瓜是典型的棉子糖家族系列寡糖 (Raffinose family oligosaccharides, RFOs)转运植物,DNA甲基化是植物中常见的表观遗传修饰,但其在库源调控中的作用尚未在RFO转运物种中得到证实。
2023年12月28日,扬州大学园艺园林学院缪旻珉教授团队在《Plants》杂志以“The Sink-Source Relationship in Cucumber (Cucumis sativus L.) Is Modulated by DNA Methylation”为题发表研究论文,研究基于全基因组重亚硫酸盐测序(whole-genome bisulfite sequencing)绘制了不同库(sink)强度黄瓜叶片的表观遗传基因组图谱,分析了DNA甲基化在黄瓜植物中如何影响“源—库”关系,进而可能影响植物产量。易基因科技为本研究提供WGBS建库测序分析技术服务。
标题:The Sink-Source Relationship in Cucumber (Cucumis sativus L.) Is Modulated by DNA Methylation(黄瓜的源库关系受DNA甲基化调控)
时间:2023-12-28
期刊:Plants
影响因子:IF 4.5
平台:WGBS、RNA-seq等
研究摘要:
本研究通过全基因组亚硫酸盐测序(WGBS-seq)比较了两种处理下的叶片:第12节点的非结果节叶(Nonfruiting-Node Leaves,NFNL)和坐果叶(leaves of fruit setting,FNL)。在这两种处理中,其他节的雌性花均去除。研究结果揭示了大量差异甲基化基因在光合作用和碳水化合物代谢过程中富集。FNLs和NFNLs之间的比较转录组分析表明,许多具有差异甲基化区域的差异表达基因(DEGs)参与生长素/乙烯和油菜素内酯的代谢、蔗糖代谢、以及与库源调控相关的RFO合成通路。此外,5-aza-dC-2'-脱氧胞苷(5-aza-dC,一种DNA甲基转移酶抑制剂)处理FNLs后,叶片中上述通路中6个库源相关基因的DNA甲基化水平降低,RFO合成通路中的棉子糖合成酶(CsSTS)基因表达、酶活性和棉子糖含量上调,从而增加果实长度和干重。本研究结果为DNA甲基化在库源关系中的潜在作用提供了最新的推断,这将为进一步探索DNA甲基化在提高RFO转运植物产量中的分子机制提供重要参考。
研究结果
(1)非结果节叶(NFNLs)和坐果叶(FNLs)全基因组中重亚硫酸盐测序(WGBS)的动态DNA甲基化图谱
图1:FNL和NFNL中全基因组DNA甲基化模式和差异甲基化区域(DMR)数量。
(2)差异甲基化基因(DMGs)的GO分析
图2:黄瓜FNLs和NFNLs之间差异甲基化基因(DMGs)的GO富集分析。
(3)FNLs和NFNLs之间DNA甲基化与基因表达的相关性
图3:与库源调控相关的代谢通路中差异甲基化区域和差异表达基因的比较分析。
图4:DNA甲基化富集与NFNLs和FNLs之间库源调控相关基因表达水平之间的相关性。
(4)5-Aza-dC对库源关系的作用
图5:5-aza-dC-2'-脱氧胞苷(5-aza-dC)处理后FNL中胞嘧啶-5 DNA甲基转移酶(C5-MTase)和DNA去甲基化酶(dMTase)的表达谱。
数据表示为RT-qPCR中的平均值±SD(n=3)。星号表示相对于CK组的显著差异(*p<0.05;**p<0.01;***p<0.001,使用学生t检验)。
图6:叶片库源相关基因的表达谱和DNA甲基化水平以及FNLs上5-Aza-dC处理后的果实表型表征分析。
数据表示为平均值,图(B–D)中三个重复的标准偏差(SD)和图(E,F)中五个重复的标准偏差(SD)。误差线表示三/五个生物学重复之间的标准偏差。星号表示相对于CK组的显著差异(*p<0.05;**p<0.01;***p<0.001,使用学生t检验)。
研究结论
源库之间的光合产物分配是黄瓜产量的重要决定因素。本研究首次深入了解了黄瓜不同库强度下的表观遗传谱。甲基化组和转录组分析结果表明,DEGs参与生长素/乙烯和油菜素内酯的生物合成和代谢、蔗糖代谢,以及RFO合成通路受DNA甲基化调控。此外,经5-Aza-dC处理的坐果叶(FNLs)促进了果实生长。5-Aza-dC上调了CSST的相对表达,CSST酶活性和参与叶片同化物负荷的棉子糖含量,表明5-Aza-dC在库源调控中的重要作用。这项研究揭示了DNA甲基化对库源关系的贡献,并提出了通过改变DNA甲基化来提高黄瓜产量的可能性。
关于易基因全基因组重亚硫酸盐测序(WGBS)
全基因组重亚硫酸盐甲基化测序(WGBS)可以在全基因组范围内精确的检测所有单个胞嘧啶碱基(C碱基)的甲基化水平,是DNA甲基化研究的金标准。WGBS能为基因组DNA甲基化时空特异性修饰的研究提供重要技术支持,能广泛应用在个体发育、衰老和疾病等生命过程的机制研究中,也是各物种甲基化图谱研究的首选方法。
易基因全基因组甲基化测序技术通过T4-DNA连接酶,在超声波打断基因组DNA片段的两端连接接头序列,连接产物通过重亚硫酸盐处理将未甲基化修饰的胞嘧啶C转变为尿嘧啶U,进而通过接头序列介导的 PCR 技术将尿嘧啶U转变为胸腺嘧啶T。
应用方向:
WGBS广泛用于各种物种,要求全基因组扫描(不错过关键位点)
技术优势:
易基因科技提供全面的DNA甲基化研究整体解决方案,详询易基因:0755-28317900。
参考文献:Wang Y, Zhang H, Gu J, Chen C, Liu J, Zhang Z, Hua B, Miao M. The Sink-Source Relationship in Cucumber (Cucumis sativus L.) Is Modulated by DNA Methylation. Plants (Basel). 2023 Dec 28;13(1) pii: plants13010103. doi: 10.3390/plants13010103. PubMed PMID: 38202411.
相关阅读:
年终盘点 | 易基因2023年度DNA甲基化研究项目文章精选
项目文章 | WGBS等揭示SOX30甲基化在非梗阻性无精症中的表观遗传调控机制
项目文章|WGBS+RNA-seq揭示PM2.5引起男性生殖障碍的DNA甲基化调控机制
技术推介 | 全基因组重亚硫酸盐甲基化测序(WGBS)