机器学习算法实战案例:确实可以封神了,时间序列预测算法最全总结!
机器学习算法实战案例:时间序列数据最全的预处理方法总结
机器学习算法实战案例:GRU 实现多变量多步光伏预测
机器学习算法实战案例:LSTM实现单变量滚动风电预测
机器学习算法实战案例:LSTM实现多变量多步负荷预测
机器学习算法实战案例:CNN-LSTM实现多变量多步光伏预测
机器学习算法实战案例:BiLSTM实现多变量多步光伏预测
技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。
本文完整代码、相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:Python学习与数据挖掘,后台回复:加群
方式②、添加微信号:dkl88194,备注:来自CSDN + 技术交流
import matplotlib.pyplot as plt
from sampen import sampen2 # sampen库用于计算样本熵
from vmdpy import VMD # VMD分解库
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout, LSTM, GRU
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
warnings.filterwarnings('ignore')
实验数据集采用数据集8:新疆光伏风电数据集,数据集包括组件温度(℃) 、温度(°) 气压(hPa)、湿度(%)、总辐射(W/m2)、直射辐射(W/m2)、散射辐射(W/m2)、实际发电功率(mw)特征,时间间隔15min。对数据进行可视化
data_raw = pd.read_excel("E:\\课题\\08数据集\\新疆风电光伏数据\\光伏2019.xlsx")
from itertools import cycle
def visualize_data(data, row, col):
cycol = cycle('bgrcmk')
cols = list(data.columns)
fig, axes = plt.subplots(row, col, figsize=(16, 4))
if row == 1 and col == 1: # 处理只有1行1列的情况
axes = [axes] # 转换为列表,方便统一处理
for i, ax in enumerate(axes.flat):
if i < len(cols):
ax.plot(data.iloc[:,i], c=next(cycol))
ax.set_title(cols[i])
ax.axis('off') # 如果数据列数小于子图数量,关闭多余的子图
plt.subplots_adjust(hspace=0.6)
visualize_data(data_raw.iloc[:,1:], 2, 4)
单独查看部分功率数据,发现有较强的规律性。
因为只是单变量预测,只选取实际发电功率(mw)数据进行实验。
首先查看数据的信息,发现并没有缺失值
data_raw.info()
进一步统计缺失值
data_raw.isnull().sum()
使用VMD将目标信号分解成若干个模态,进一步可视化分解结果
def vmd_decompose(series=None, alpha=2000, tau=0, K=7, DC=0, init=1, tol=1e-7, draw=True):
# 得到 VMD 分解后的各个分量、分解后的信号和频率
imfs_vmd, imfs_hat, omega = VMD(series, alpha, tau, K, DC, init, tol)
# 将 VMD 分解分量转换为 DataFrame, 并重命名
df_vmd = pd.DataFrame(imfs_vmd.T)
df_vmd.columns = ['imf'+str(i) for i in range(K)]
df_vmd = vmd_decompose(data_raw['实际发电功率(mw)']) # 对 df_raw_data['AQI'] 进行 VMD 分解,并将结果赋值给 df_vmd
# 绘制 df_vmd 的数据,以子图形式显示每个分量
ax = df_vmd.plot(title='VMD Decomposition', figsize=(16,8), subplots=True,fontsize=16)
a.legend(loc='upper right',prop={'size': 14})
plt.subplots_adjust(hspace=0.5)
将原始数据和分解后的模态合并
df_vmd['sum'] = data_raw['实际发电功率(mw)'] # 将 data_raw['实际发电功率(mw)']添加到 df_vmd 中的 'sum' 列
这里利用VMD-LSTM进行预测的思路是通过VMD将原始功率分解为多个变量,然后将分解变量作为输入特征,将原始出力功率作为标签,将单变量转为多变量进行预测。
构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。
timesteps = 96*5 #构造x,为96*5个数据,表示每次用前96*5个数据作为一段
predict_steps = 96 #构造y,为96个数据,表示用后96个数据作为一段
length = 96 #预测多步,预测96个数据
通过前5天的timesteps数据预测后一天的数据predict_steps个,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分,不然后面归一化会有信息泄露的问题。
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
def create_dataset(datasetx,datasety,timesteps=36,predict_size=6):
for each in range(len(datasetx)-timesteps - predict_steps):
x = datasetx[each:each+timesteps]
y = datasety[each+timesteps:each+timesteps+predict_steps]
数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,函数的定义如下:
def data_scaler(datax,datay):
scaler1 = MinMaxScaler(feature_range=(0,1))
scaler2 = MinMaxScaler(feature_range=(0,1))
datax = scaler1.fit_transform(datax)
datay = scaler2.fit_transform(datay)
# 用前面的数据进行训练,留最后的数据进行预测
trainx, trainy = create_dataset(datax[:-timesteps-predict_steps,:],datay[:-timesteps-predict_steps,0],timesteps, predict_steps)
trainx = np.array(trainx)
trainy = np.array(trainy)
return trainx, trainy, scaler1, scaler2
然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的数据96个,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)
datay = df_vmd[:,-1].reshape(df_vmd.shape[0],1)
trainx, trainy, scaler1, scaler2 = data_scaler(datax, datay)
首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含128个样本(建议使用GPU进行训练)。预测并计算误差,训练好将模型保存,并进行可视化,将这些步骤封装为函数。
def LSTM_model_train(trainx, trainy):
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
tf.config.experimental.set_memory_growth(gpu, True)
start_time = datetime.datetime.now()
model.add(LSTM(128, input_shape=(timesteps, feature_num), return_sequences=True))
model.add(Dropout(0.5))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(predict_steps))
model.compile(loss="mean_squared_error", optimizer="adam")
model.fit(trainx, trainy, epochs=50, batch_size=128)
end_time = datetime.datetime.now()
running_time = end_time - start_time
model.save('vmd_lstm_model.h5')
model = LSTM_model_train(trainx, trainy)
首先加载训练好后的模型
from tensorflow.keras.models import load_model
model = load_model('vmd_lstm_model.h5')
准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。
y_true = datay[-timesteps-predict_steps:-timesteps]
x_pred = datax[-timesteps:]
预测并计算误差,并进行可视化,将这些步骤封装为函数。
def predict_and_plot(x, y_true, model, scaler, timesteps):
predict_x = np.reshape(x, (1, timesteps, feature_num))
predict_y = model.predict(predict_x)
predict_y = scaler.inverse_transform(predict_y)
y_predict.extend(predict_y[0])
r2 = r2_score(y_true, y_predict)
rmse = mean_squared_error(y_true, y_predict, squared=False)
mae = mean_absolute_error(y_true, y_predict)
print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))
cycol = cycle('bgrcmk')
plt.figure(dpi=100, figsize=(14, 5))
plt.plot(y_true, c=next(cycol), markevery=5)
plt.plot(y_predict, c=next(cycol), markevery=5)
plt.legend(['y_true', 'y_predict'])
y_predict_nowork = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)
最后得到可视化结果,发下可视化结果并不是太好,可以通过调参和数据处理进一步提升模型预测效果。